The authors report a very rare presentation of traumatic carotid-cavernous fistula (CCF) with extensive edema of the basal ganglia and brainstem because of an anatomical variation of the basal vein of Rosenthal (BVR). A 45-year-old woman was admitted to the authors' institution for left hemiparesis, dysarthria, and a comatose state caused by right orbital trauma from a thin metal rod. Brain MRI showed a right CCF and vasogenic edema of the right side of the brainstem, right temporal lobe, and basal ganglia. Digital subtraction angiography confirmed a high-flow direct CCF and revealed a hypoplastic second segment of the BVR responsible for the hypertension in inferior striate veins and venous congestion. Endovascular treatment was performed on an emergency basis. One month after treatment, the patient's symptoms and MRI signal abnormalities almost totally disappeared. Basal ganglia and brainstem venous congestion may occur in traumatic CCF in cases of a hypoplastic or agenetic second segment of the BVR and may provoke emergency treatment.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2014.1.JNS132016DOI Listing

Publication Analysis

Top Keywords

basal ganglia
16
traumatic carotid-cavernous
8
carotid-cavernous fistula
8
rare presentation
8
basal vein
8
vein rosenthal
8
anatomical variation
8
ganglia brainstem
8
second segment
8
segment bvr
8

Similar Publications

The pathophysiology of dystonia in Wilson disease (WD) is complex and poorly understood. Copper accumulation in the basal ganglia, disrupts dopaminergic pathways, contributing to dystonia's development via neurotransmitter imbalance. Despite advances in diagnosis and management, WD with dystonia remains a challenging condition to treat.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) is the most lethal and devastating subtype of stroke. Basal ganglia hemorrhage and thalamic hemorrhage are the most common types of ICH, accounting for 50-70% of all ICH cases, leading to disability and death, and it involves the posterior limb of the internal capsule to varying degrees. In this study, we investigated the impact of varying degrees of the involvement of the posterior limb of the internal capsule on the prognosis of patients with basal ganglia and thalamic ICH and assessed whether it improves the predictive accuracy of the max-ICH score, an existing scale for ICH functional outcome.

View Article and Find Full Text PDF

Background And Purpose: Differentiating Parkinson's Disease (PD) from Atypical Parkinsonism Syndrome (APS), including Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP), is challenging, and there is no gold standard. Integrating quantitative susceptibility mapping (QSM) and morphometry can help differentiate PD from APS and improve the internal diagnosis of APS.

Materials And Methods: In this retrospective study, we enrolled 55 patients with PD, 17 with MSA-parkinsonian type (MSA-P), 15 with MSA-cerebellar type (MSA-C), and 14 with PSP.

View Article and Find Full Text PDF

The interplay between two major forebrain structures-cortex and subcortical striatum-is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated, while the primary motor cortex is involved in specifying the continuous parameters of an upcoming/ongoing movement. Recent data indicate that striatum may also be involved in specification.

View Article and Find Full Text PDF

A generalizable normative deep autoencoder for brain morphological anomaly detection: application to the multi-site StratiBip dataset on bipolar disorder in an external validation framework.

Artif Intell Med

January 2025

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

The heterogeneity of psychiatric disorders makes researching disorder-specific neurobiological markers an ill-posed problem. Here, we face the need for disease stratification models by presenting a generalizable multivariate normative modelling framework for characterizing brain morphology, applied to bipolar disorder (BD). We used deep autoencoders in an anomaly detection framework, combined for the first time with a confounder removal step that integrates training and external validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!