Triphenylborane-pyridine (TPBP) is an antifouling compound used in Asian countries, including Japan, and its residue has not been detected in aquatic environments to date. There are limited data on its fate for environmental management. The purpose of this study was to evaluate whether TPBP is degraded by metal ions in aquatic environments. TPBP with metal ions in 20 mM sodium acetate buffer at pH 8.0 was placed at 25 degrees C in the dark for 24 h. The concentrations of TPBP and its degradation products, such as diphenylboronic acid, phenylboronic acid (MPB), phenol, benzene, biphenyl, and boron were determined. The presence of copper ions (50 mg/l), but not zinc or manganese ions, resulted in complete degradation of TPBP in 24 h. The TPBP degradation was much faster than the boron production in the initial reaction (0-1 h) with copper salts, depending on the copper salts tested. TPBP was degraded by copper ions (5 mg/l) in 24 h, producing phenol, MPB, biphenyl, and borate. Cu2+ as copper(II) chloride or copper(II) acetate led to complete degradation of TPBP, and thylenediaminetetraacetic acid disodium salt addition suppressed the TPBP degradation. Cu+ as copper(I) acetate also completely degraded TPBP, and bathocuproine addition suppressed the TPBP degradation. This suggests that copper ions existing in natural environments might degrade TPBP released from antifouling paint into water, and this could be one of the important mechanisms to dissipate TPBP residues in aquatic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2013.790083 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Statistics, Imam Khomeini International University, Qazvin, Iran.
Determination of hydrogen peroxide (HO) is of great importance in many systems for controlling the quality of products, food safety, and medical diagnostics. In this work, a highly sensitive photoluminescence film sensor was synthesized based on chitosan (CS), polyvinyl alcohol (PVA), and terephthalic acid (TPA), in the presence of copper (II) ions for determination of hydrogen peroxide. TPA was used as a sensitive probe for detection of hydroxyl radicals produced in a photo-Fenton-like process.
View Article and Find Full Text PDFWater Res
January 2025
China Electronics System Engineering No.2 Construction Co., Ltd., Wuxi 214115, PR China.
Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).
View Article and Find Full Text PDFTalanta
January 2025
College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China.
This study introduces an innovative electrochemical biosensor, engineered through the functionalization screen-printed electrode (SPE) with a coordination complex comprised of 4-mercaptobenzoic acid (4-MBA) and copper ions (Cu), achieving precise quantitative determination of glyphosate. Electrodepositing gold nanoparticles (AuNPs) onto the electrode surface, forming a self-assembled monolayer (SAM) of 4-MBA via thiol-gold interactions, and immobilizing Cu via coordination bonding with the monolayer, finalizing the electrochemical biosensor construction as Cu/4-MBA/AuNPs/SPE. The successful modification of the biosensor interface is confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical characterization.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Monte sant'Angelo Campus, Via Cintia 4, 80126 Naples, Italy.
As Streptomycetes might produce melanin to survive in stressful environmental conditions, like under metal exposure, supplementing metal ions to the growth medium could be a wise strategy for boosting the production of the pigment. The aim of this study was to test, for the first time, the possibility of boosting DSM40314 melanin biosynthesis by adding to the growth medium singularly or, at the same time, different concentrations (1.0, 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!