Trophoblast stem cells (TSCs) are in vitro equivalents to the precursor cells of the placenta. TSCs are cultured in serum-rich medium with fibroblast growth factor 4, heparin, and embryonic-fibroblast-conditioned medium. Here, we developed a simple medium consisting of ten chemically defined ingredients for culture of TSCs on Matrigel or synthetic substrates, named TX medium. Gene expression and DNA methylation profiling demonstrated the faithful propagation of expression profiles and epigenomic characteristics of TSCs cultured in TX. Further, TX medium supported the de novo derivation of TSC lines. Finally, TSCs cultured in TX differentiate into all derivatives of the trophectodermal lineage in vitro, give rise to hemorrhagic lesions in nude mice, and chimerize the placenta, indicating that they retained all hallmarks of TSCs. TX media formulation no longer requires fetal bovine serum and conditioned medium, which facilitates and standardizes the culture of this extraembryonic lineage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923226PMC
http://dx.doi.org/10.1016/j.stemcr.2013.12.013DOI Listing

Publication Analysis

Top Keywords

tscs cultured
12
trophoblast stem
8
stem cells
8
tscs
6
medium
6
derivation maintenance
4
maintenance murine
4
murine trophoblast
4
cells defined
4
defined conditions
4

Similar Publications

Understanding the mechanisms of hypoblast development and its role in the implantation is critical for improving farm animal reproduction, but it is hampered by the lack of research models. Here we report that a chemical cocktail (FGF4, BMP4, IL-6, XAV939, and A83-01) enables de novo derivation and long-term culture of bovine extraembryonic endoderm cells (bXENs). Transcriptomic and epigenomic analyses confirmed the identity of bXENs and revealed that they are resemble hypoblast lineages of early bovine peri-implantation embryos.

View Article and Find Full Text PDF

Evaluating multiannual sedimentary nutrient retention in agricultural two-stage channels.

Sci Rep

January 2025

Environmental Geochemistry group, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.

The two-stage channel (TSC) design with a vegetated man-made floodplain has been recommended as an alternative to conventional re-dredging for managing suspended sediment (SS) and nutrient loads in agricultural streams. However, there are currently uncertainties surrounding the efficiency of TSCs, since mass balances covering the whole annual hydrograph and including different periods of the channel life cycle are lacking. This paper aims to improve understanding of the medium-term morphological development and sedimentary nutrient retention when a dredged, trapezoidal-shaped channel is converted into a TSC, using a mass balance estimate of nutrient and carbon retention from immediately after excavation until the establishment of approximate biogeochemical equilibrium retention.

View Article and Find Full Text PDF

Organoid generation from trophoblast stem cells highlights distinct roles for cytotrophoblasts and stem cells in organoid formation and expansion.

Placenta

December 2024

Department of Obstetrics, Gynaecology and Reproductive Science, School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand. Electronic address:

Background: Organoids are stem-cell derived, self-organised, three-dimensional cultures that improve in vitro recapitulation of tissue structure. The generation of trophoblast organoids using primary placental villous digests (containing cytotrophoblasts and trophoblast stem cells (TSC)) improved high-throughput assessment of early trophoblast differentiation. However, the relative contributions of cytotrophoblasts and TSCs to trophoblast organoid growth and differentiation remain unclear, with implications for model interpretation.

View Article and Find Full Text PDF

Marmoset and human trophoblast stem cells differ in signaling requirements and recapitulate divergent modes of trophoblast invasion.

Cell Stem Cell

October 2024

Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK. Electronic address:

Article Synopsis
  • - The study investigates early human trophoblast development using marmoset embryos, bridging gaps in understanding due to the inaccessibility of human early conceptus.
  • - Researchers successfully created trophoblast stem cells (TSCs) from marmoset pluripotent stem cells, demonstrating unique characteristics and differentiation potential compared to human TSCs.
  • - The findings suggest that specific culture conditions for marmosets can maintain a trophoblast-like identity, revealing insights into evolutionary differences in implantation and enhancing knowledge of human development.
View Article and Find Full Text PDF

Staphylococcus aureus poses a significant threat in both community and hospital settings due to its infective and pathogenic nature combined with its ability to resist the action of chemotherapeutic agents. Methicillin-resistant S. aureus (MRSA) represents a critical challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!