A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Connexin43 Mimetic Peptide Promotes Regenerative Healing and Improves Mechanical Properties in Skin and Heart. | LitMetric

A Connexin43 Mimetic Peptide Promotes Regenerative Healing and Improves Mechanical Properties in Skin and Heart.

Adv Wound Care (New Rochelle)

Department of Bioengineering, Clemson University , Clemson, South Carolina. ; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina.

Published: March 2013

Significance: Evidence is building that the gap junction protein connexin43 (Cx43) is an important molecule in regenerative healing of skin and heart. Excess scarring from skin wound healing is a continuing clinical problem. Humans generally lack the ability to regenerate tissue following injury, and some degree of fibrotic repair occurs. In the skin, this results in unsightly scars with inferior mechanical properties. In the heart, scarring causes disruption in the contractility of cardiac muscle and increases the risk of deadly arrhythmia. Therapies that tip the balance of wound healing away from scar tissue and toward regeneration would thus represent a significant medical advance.

Recent Advances: A cell-permeant peptide, αCT1 (alpha connexin carboxyl-terminal peptide), based on the carboxyl-terminus of connexin43, has been shown to elicit changes in gap junction organization and intracellular communication. In the skin, αCT1 applied at acute time points results in decreased inflammatory response, reduced area of scar progenitor tissue, and restoration of more normal dermal structure and mechanical strength. αCT1 application to infarcted hearts improved cardiac contractility, reduced the propensity for arrhythmia, and increased conduction velocity through the injured heart.

Critical Issues: Application of therapies like αCT1 could reduce cutaneous scarring and improve mechanical properties of healed skin and the contractile function and electrical stability of the heart following injury or surgery.

Future Directions: αCT1 is a potential therapy for cutaneous wounds that could lead to reduced scarring and improvements in the mechanical properties of healed skin. For injured myocardial tissues, this Cx43 mimetic peptide may also provide a therapeutic approach for targeting pathological fibrosis and reducing the likelihood of sudden death from cardiac arrhythmias.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840551PMC
http://dx.doi.org/10.1089/wound.2011.0341DOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
mimetic peptide
8
regenerative healing
8
skin heart
8
gap junction
8
wound healing
8
properties healed
8
healed skin
8
skin
7
mechanical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!