Collagen, which is produced by fibroblasts, is the most abundant protein in the human body. A natural structural protein, collagen is involved in all 3 phases of the wound-healing cascade. It stimulates cellular migration and contributes to new tissue development. Because of their chemotactic properties on wound fibroblasts, collagen dressings encourage the deposition and organization of newly formed collagen, creating an environment that fosters healing. Collagen-based biomaterials stimulate and recruit specific cells, such as macrophages and fibroblasts, along the healing cascade to enhance and influence wound healing. These biomaterials can provide moisture or absorption, depending on the delivery system. Collagen dressings are easy to apply and remove and are conformable. Collagen dressings are usually formulated with bovine, avian, or porcine collagen. Oxidized regenerated cellulose, a plant-based material, has been combined with collagen to produce a dressing capable of binding to and protecting growth factors by binding and inactivating matrix metalloproteinases in the wound environment. The increased understanding of the biochemical processes involved in chronic wound healing allows the design of wound care products aimed at correcting imbalances in the wound microenvironment. Traditional advanced wound care products tend to address the wound's macroenvironment, including moist wound environment control, fluid management, and controlled transpiration of wound fluids. The newer class of biomaterials and wound-healing agents, such as collagen and growth factors, targets specific defects in the chronic wound environment. In vitro laboratory data point to the possibility that these agents benefit the wound healing process at a biochemical level. Considerable evidence has indicated that collagen-based dressings may be capable of stimulating healing by manipulating wound biochemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601889 | PMC |
http://dx.doi.org/10.1016/j.jcws.2010.12.003 | DOI Listing |
Inj Epidemiol
January 2025
Department of Trauma Surgery, TUM University Hospital Klinikum Rechts der Isar, Ismaninger Straße 22, 81675, Munich, Germany.
Background: The increasing adoption of individual urban mobility in European cities is contributing to a rise in the number of bicycle and e-scooter users. Consequently, a corresponding increase in accidents, along with an additional burden on emergency departments, is anticipated, particularly in metropolitan areas. The objective of this prospective cross-sectional study was to gather detailed information regarding the patient demographics, accident mechanisms, and injury patterns of e-scooter riders in comparison to cyclists.
View Article and Find Full Text PDFPatient Saf Surg
January 2025
Department of Trauma, University Hospital Zurich, Raemistrasse 100, Zurich, 8091, Switzerland.
Introduction: Regional anesthesia increases in popularity in orthopaedic surgery. It is usually applied in elective surgeries of the extremities. The aim of this study was to assess indication of the use of general anesthesia in the surgical treatment of distal radius fractures.
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden.
Background: Congenital insensitivity to pain with anhidrosis is a rare but devastating hereditary disease. Congenital insensitivity to pain with anhidrosis is caused by a mutation in the neurotrophic receptor tyrosine kinase 1 gene (NRTK1). The condition is characterized by multiple injuries, recurrent infections, and mental retardation.
View Article and Find Full Text PDFJ Transl Med
January 2025
The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
Background: Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
Background: Ankle sprains often result in muscle atrophy and reduced range of motion, which can cause long-term ankle instabilities. Understanding the changes to muscle-such as atrophy-and concomitant changes to deep fascia-which may thicken alongside muscle loss-after ankle sprain injury is important to understanding structural changes about the joint and how they might contribute to longer-term impairments. Here, we employ advanced MRI to investigate skeletal muscle and fascial structural changes during the recovery period of one patient undergoing immobilization after ankle sprains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!