Electrical injuries can occur as a result of contact with low- or high-voltage electricity. Low-voltage injuries are more common, as they usually occur in the home, but reports in the literature are few. After exposure to electric current, almost every organ system in the body is affected. The severity of an injury depends on many factors, including the type of current, the duration of exposure, and the resistance of the tissue involved. Reported cases of hearing loss and facial nerve paralysis associated with low-voltage electrical shock are rare, and minimal information is available about this circumstance. In this article, the author describes a case of low-voltage electrical shock in a 20-year-old man. To the best of the author's knowledge, this is the first report in the literature of a resolution of unilateral sensorineural hearing loss and facial nerve paralysis caused by a low-voltage electrical shock.
Download full-text PDF |
Source |
---|
Materials (Basel)
January 2025
School of Microelectronics and Artificial Intelligence, Kaili University, Kaili 556011, China.
From the discovery of carbon nanotubes to the ability to prepare high-purity semiconductor carbon nanotubes in large quantities, the large-scale fabrication of carbon nanotube transistors (CNT) will become possible. In this paper, a carbon nanotube transistor featuring a buried-gate structure, employing an etching process to optimize the surface flatness of the device and enhance its performance, is presented. This CNT thin-film transistor has a current switching ratio of 10, a threshold voltage of around 1 V, and a mobility that can reach 6.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
Electro-conductive membranes coupled with a low-voltage electric field can enhance pollutant removal and mitigate membrane fouling, demonstrating significant potential for electrified wastewater treatment. However, efficient fabrication of conductive membranes poses challenges. An in situ oxidative polymerization approach was applied to prepare PVDF-based conductive membranes (PVDF-CMs) and response surface methodology (RSM) was adopted to optimize modification conditions enhancing membrane performance.
View Article and Find Full Text PDFSmall
January 2025
Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
Spiking neurons are essential for building energy-efficient biomimetic spatiotemporal systems because they communicate with other neurons using sparse and binary signals. However, the achievable high density of artificial neurons having a capacitor for emulating the integrate function of biological neurons has a limit. Furthermore, a low-voltage operation (<1.
View Article and Find Full Text PDFTalanta
January 2025
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China. Electronic address:
As an emerging ionic sensor with low-voltage operation (<1 V), biocompatibility, and stable operation in aqueous environments, organic electrochemical transistors (OECTs) have attracted significant research interest for various biofluid-related ion detection, where minor ion concentration variations can effectively reflect health or pathology states. However, OECT-based ion sensors are currently limited by restricted device transconductance g and stabilites, which severely hinder their applications in actual ion sensing scenarios. Here, ultra-sensitive multi-ion sensors based on high-performance n-type vertical OECTs (accumulation mode, g = 58 mS) for Na, K, and Ca detection in a practical biofluid (effluent from continuous renal replacement therapy), are demonstrated with high accuracy and stability, which are comparable to conventional Roche method.
View Article and Find Full Text PDFBackground: Few clinical studies of atrial fibrillation (AF) have focused on Asian patients; data are lacking on current mapping and ablation strategies in the Asia Pacific region (APAC).
Objective: The HD Mapping Observational Study (NCT04022954) was designed to characterize electroanatomic mapping (EAM) with market-released high-density mapping (HDM) catheters in subjects with AF in APAC.
Methods: Subjects undergoing HDM and indicated for radiofrequency ablation (RFA) to treat AF were prospectively enrolled in APAC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!