Purpose: Hypoxic-ischemic brain injury that occurs in the perinatal period is one of the leading causes of mental retardation, visual and auditory impairment, motor defects, epilepsy, cerebral palsy, and death in neonates. The severity of apoptosis that develops after ischemic hypoxia and reperfusion is an indication of brain injury. Thus, it may be possible to prevent or reduce injury with treatments that can be given before the reperfusion period following hypoxia and ischemia. Levetiracetam is a new-generation antiepileptic drug that has begun to be used in the treatment of epilepsy.
Methods: The present study investigated the effects of levetiracetam on neuronal apoptosis with histopathological and biochemical tests in the early period and behavioral experiments in the late period.
Results: This study showed histopathologically that levetiracetam reduces the number of apoptotic neurons and has a neuroprotective effect in a neonatal rat model of hypoxic-ischemic brain injury in the early period. On the other hand, we demonstrated that levetiracetam dose dependently improves behavioral performance in the late period.
Conclusions: Based on these results, we believe that one mechanism of levetiracetam's neuroprotective effects is due to increases in glutathione peroxidase and superoxide dismutase enzyme levels. To the best of our knowledge, this study is the first to show the neuroprotective effects of levetiracetam in a neonatal rat model of hypoxic-ischemic brain injury using histopathological, biochemical, and late-period behavioral experiments within the same experimental group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00381-014-2375-x | DOI Listing |
Ann Clin Transl Neurol
December 2024
Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Objective: The short-term efficacy of red blood cell (RBC) transfusion among general traumatic brain injury (TBI) patients is unclear.
Methods: We used the MIMIC database to compare the efficacy of liberal (10 g/dL) versus conservative (7 g/dL) transfusion strategy in TBI patients. The outcomes were neurological progression (decrease of Glasgow coma scale (GCS) of at least 2 points) and death within 28 days of ICU admission.
Arch Orthop Trauma Surg
December 2024
Department of Surgery, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
Background: Nosocomial pneumonia is common in trauma patients and associated with an adverse prognosis. We recently externally validated and recalibrated an existing formula to predict nosocomial pneumonia risk. Identifying more potential predictors could aid in a more accurate prediction of nosocomial pneumonia risk in level-1 trauma patients.
View Article and Find Full Text PDFBrain Inj
December 2024
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
Objective: The purpose of this study was to determine whether gray matter volume and diffusion-based metrics in associated white matter changed in breachers who had neuroimaging performed at two timepoints. A secondary purpose was to compare these changes in a group who had a one-year interval between their imaging timepoints to a group that had a two-year interval between imaging.
Methods: Between timepoints, clusters with significantly different gray matter volume were used as seeds for reconstruction of associated structural networks using diffusion metrics.
Epilepsia
December 2024
VA Salt Lake City Health Care System, Informatics, Decision-Enhancement and Analytic Sciences Center, Salt Lake City, Utah, USA.
Objective: Traumatic brain injury (TBI) is a significant risk factor for epilepsy, but little work has explored whether risk of epilepsy after TBI may operate through intermediary mechanisms. The objective of this study was to statistically screen for potentially mediating effects among 64 comorbidities for epilepsy risk following TBI among Post-9/11 U.S.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
Our group has synthesized a pleiotropic synthetic nanozyme redox mediator we term a "pleozyme" that displays multiple enzymatic characteristics, including acting as a superoxide dismutase mimetic, oxidizing NADH to NAD, and oxidizing HS to polysulfides and thiosulfate. Benefits have been seen in acute and chronic neurological disease models. The molecule is sourced from coconut-derived activated charcoal that has undergone harsh oxidization with fuming nitric acid, which alters the structure and chemical characteristics, yielding 3-8 nm discs with broad redox potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!