Background: The biomass burning that occurs in the Amazon region has an adverse effect on environmental and human health. However, in this region, there are limited studies linking atmospheric pollution and genetic damage.

Objective: We conducted a comparative study during intense and moderate biomass burning periods focusing on the genetic damage and physicochemical analyses of the particulate matter (PM).

Method: PM and black carbon (BC) were determined; organic compounds were identified and quantified using gas chromatography with flame ionization detection, the cyto-genotoxicity test was performed using two bioassays: cytokinesis-block micronucleus (CBMN) in A549 cells and Tradescantia pallida micronucleus (Trad-MCN) assay.

Results: The PM10 concentrations were lower than the World Health Organization air quality standard for 24h. The n-alkanes analyses indicate anthropogenic and biogenic influences during intense and moderate biomass burning periods, respectively. Retene was identified as the most abundant polycyclic aromatic hydrocarbon during both sampling periods. Carcinogenic and mutagenic compounds were identified. The genotoxic analysis through CBMN and Trad-MCN tests showed that the frequency MCN from the intense burning period is significantly higher compared to moderate burning period.

Conclusions: This is the first study using human alveolar cells to show the genotoxic effects of organic PM from biomass burning samples collected in Amazon region. The genotoxicity of PM can be associated with the presence of several mutagenic and carcinogenic compounds, mainly benzo[a]pyrene. These findings have potential implications for the development of pollution abatement strategies and can minimize negative impact on health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2013.12.011DOI Listing

Publication Analysis

Top Keywords

biomass burning
20
intense moderate
12
moderate biomass
12
genetic damage
8
comparative study
8
study intense
8
amazon region
8
burning periods
8
compounds identified
8
burning
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!