HCN2 channels account for mechanical (but not heat) hyperalgesia during long-standing inflammation.

Pain

Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany Klinik für Anästhesiologie und Intensivmedizin, Medizinische Hochschule Hannover, Hannover, Germany.

Published: June 2014

There is emerging evidence that hyperpolarization-activated cation (HCN) channels are involved in the development of pathological pain, including allodynia and hyperalgesia. Mice lacking the HCN isoform 2 display reduced heat but unchanged mechanical pain behavior, as recently shown in preclinical models of acute inflammatory pain. However, the impact of HCN2 to chronic pain conditions is less clear and has not been examined so far. In this report, we study the role of HCN2 in the complete Freund's adjuvant inflammation model reflecting chronic pain conditions. We used sensory neuron-specific as well as inducible global HCN2 mutants analyzing pain behavior in persistent inflammation and complemented this by region-specific administration of an HCN channel blocker. Our results demonstrate that the absence of HCN2 in primary sensory neurons reduces tactile hypersensitivity in chronic inflammatory conditions but leaves heat hypersensitivity unaffected. This result is in remarkable contrast to the recently described role of HCN2 in acute inflammatory conditions. We show that chronic inflammation results in an increased expression of HCN2 and causes sensitization in peripheral and spinal terminals of the pain transduction pathway. The contribution of HCN2 to peripheral sensitization mechanisms was further supported by single-fiber recordings from isolated skin-nerve preparations and by conduction velocity measurements of saphenous nerve preparations. Global HCN2 mutants revealed that heat hypersensitivity-unaffected in peripheral HCN2 mutants-was diminished by the additional disruption of central HCN2 channels, suggesting that thermal hyperalgesia under chronic inflammatory conditions is mediated by HCN2 channels beyond primary sensory afferents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pain.2014.02.006DOI Listing

Publication Analysis

Top Keywords

hcn2
12
hcn2 channels
12
inflammatory conditions
12
pain behavior
8
acute inflammatory
8
chronic pain
8
pain conditions
8
role hcn2
8
global hcn2
8
hcn2 mutants
8

Similar Publications

In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between gustatory receptor neurons (GRNs).

View Article and Find Full Text PDF

Hibernation, an adaptive mechanism to extreme environmental conditions, is prevalent among mammals. Its main characteristics include reduced body temperature and metabolic rate. However, the mechanisms by which hibernating animals re-enter deep sleep during the euthermic phase to sustain hibernation remain poorly understood.

View Article and Find Full Text PDF

PGE and HCN2 ion channels are critical mediators of pain initiated by angiotensin II.

Brain Behav Immun

December 2024

Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK. Electronic address:

Angiotensin II is well known to have an important influence on blood pressure, mediated via the angiotensin II type 1 receptor (AT1R), but more recent studies have shown that angiotensin II may play an important additional role in eliciting pain via a distinct action at the angiotensin II type 2 receptor (AT2R). Signalling pathways that link activation of AT2R to a sensation of pain are, however, incompletely understood. Here we use rodent inflammatory pain models to confirm that selective activation of AT2R triggers aversive responses, and that these are abolished by either antagonism or genetic deletion of AT2R.

View Article and Find Full Text PDF

Background: Administration of conventional anaesthetic agents is associated with changes in electroencephalogram (EEG) oscillatory dynamics, including a reduction in the peak alpha frequency. Computational models of neurones can reproduce such phenomena and are valuable tools for investigating their underlying mechanisms. We hypothesised that EEG data acquired during xenon anaesthesia in humans would show similar changes in peak alpha frequency and that computational neuronal models of recognised cellular actions of xenon would be consistent with the observed changes.

View Article and Find Full Text PDF

Spinal Nerve Axotomy: Effects on I In Vivo and HCNs in DRG Neurons.

Int J Mol Sci

November 2024

Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan,430030, China.

In vitro experiments performed on dissociated dorsal root ganglion (DRG) neurons suggest the involvement of the hyperpolarization-activated cation current (I) in enhancing neuronal excitability, potentially contributing to neuropathic pain. However, the more confirmative in vivo information about how nerve injury interacts with I is lacking. In this study, I was recorded in vivo using the dynamic single-electrode voltage clamp (dSEVC) technique on L5 DRG neurons of normal rats and those seven days after spinal nerve axotomy (SNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!