The interaction of recombinant cellulose-binding domains (CBDs) of endoglucanase Cel9B from Paenibacillus barcinonensis with different cotton cellulose allomorphs (I, II and III) has been investigated, in order to bring new insights regarding the CBD adsorption and desorption processes. The highest CBD adsorption capacity was recorded for cellulose I, confirming the affinity of proteins to the most crystalline substrate. The weakening and splitting of the hydrogen bonds within cellulose structure after CBD adsorption, as well as a decrease of the crystallinity degree were identified by ATR-FTIR spectroscopy and XRD. The CBD's adsorption kinetic was shown to be rendered by properties as, specific surface area and porosity, being confirmed by dynamic vapor sorption measurements. An important influence of temperature (25, 37 and 50°C) and/or pH medium (4, 5.5, 7 and 10) on the CBD desorption capacity was confirmed, being related to the hydrophobic interactions formed between the CBD and the cellulose allomorphs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2014.01.027DOI Listing

Publication Analysis

Top Keywords

cellulose allomorphs
12
cbd adsorption
12
paenibacillus barcinonensis
8
cellulose
5
cbd
5
influence supramolecular
4
supramolecular structure
4
structure cellulose
4
allomorphs interactions
4
interactions cellulose-binding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!