Antibiotic resistance increases costs for health care and causes therapy failure. An important mechanism for spreading resistance is transfer of plasmids containing resistance genes and subsequent selection. Yet the factors that influence the rate of transfer are poorly known. Rates of plasmid transfer were measured in co-cultures in chemostats of a donor and a acceptor strain under various selective pressures. To document whether specific mutations in either plasmid or acceptor genome are associated with the plasmid transfer, whole genome sequencing was performed. The DM0133 TetR tetracycline resistance plasmid was transferred between Escherichia coli K-12 strains during co-culture at frequencies that seemed higher at increased growth rate. Modeling of the take-over of the culture by the transformed strain suggests that in reality more transfer events occurred at low growth rates. At moderate selection pressure due to an antibiotic concentration that still allowed growth, a maximum transfer frequency was determined of once per 10(11) cell divisions. In the absence of tetracycline or in the presence of high concentrations the frequency of transfer was sometimes zero, but otherwise reduced by at least a factor of 5. Whole genome sequencing showed that the plasmid was transferred without mutations, but two functional mutations in the genome of the recipient strain accompanied this transfer. Exposure to concentrations of antibiotics that fall within the mutant selection window stimulated transfer of the resistance plasmid most.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plasmid.2014.01.002 | DOI Listing |
Ann Clin Microbiol Antimicrob
January 2025
Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
Background: The emergence of colistin resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP) is a significant public health concern, as colistin has been the last resort for treating such infections. This study aimed to investigate the prevalence and molecular characteristics of colistin-resistant CRKP isolates in Central South China.
Methods: CRKP isolates from twelve hospitals in Central South China were screened for colistin resistance using broth microdilution.
J Glob Antimicrob Resist
January 2025
Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Department of Clinical Science, University of Bergen, Bergen, Norway. Electronic address:
Purpose: To understand the mechanisms of carbapenem-resistant Klebsiella pneumoniae (CRKP) from Tanzania and characterize the genomes carrying the carbapenemase genes.
Methods: Clinical CRKP isolates were selected from ongoing antimicrobial-resistant surveillance at Muhimbili National Hospital, Dar es Salaam, Tanzania. Whole-genome sequencing was performed utilizing Illumina and Nanopore platforms.
Sci Total Environ
January 2025
Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.
Carbapenemase-producing Enterobacterales are pathogens classified as a critical priority by the World Health Organization and a burden on human health worldwide. IMI, NmcA, and FRI are under-detected class A carbapenemases that have been reported in the human, animal and environmental compartments, particularly these last 5 years. Bacteria producing these carbapenemases have been mostly identified in digestive carriage screenings, but they are also involved in severe infections, such as bacteremia.
View Article and Find Full Text PDFWater Res
January 2025
Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, PR China; Chongqing Research Institute, Jilin University, 401120 Chongqing, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, PR China. Electronic address:
Efficient nutrient recovery from source-separated urine is vital for wastewater treatment, with microalgae as a promising solution. However, bisphenol A (BPA) in urine can hinder microalgal resource recovery and pose water quality risks. The role of plant hormones in enhancing microalgal growth and pollutant removal is known, but their impact on BPA-laden urine treatment is not well-studied.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Interdisciplinary Institute for Neuroscience (UMR 5297), University of Bordeaux, Bordeaux, Gironde, France.
This is a maximal intensity projection of CA1 pyramidal cell transfected with plasmid with the reporter GFP using single cell electroporation technique. In this particular case the organotypic slices were prepared from p5-7 pups in a tissue chopper (McIlwain). And maintained in MEM bases media with added glutamax with a change in 2 alternative dyas at 37°C and 5% CO for 4 days in-vitro (DIV) before electroporating with a glass pipette of 7-10mΩ resistance by applying 4 square pulses of -ve voltage of -2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!