Free microtubule minus ends, found in many differentiated cells, contribute to polarized motility. Work from Jiang et al. (2014) in this issue of Developmental Cell shows how mammalian CAMSAP proteins stabilize minus ends, providing a key piece to the puzzle of how these minus ends are formed and stabilized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966109 | PMC |
http://dx.doi.org/10.1016/j.devcel.2014.01.025 | DOI Listing |
Dev Cell
December 2024
Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany. Electronic address:
Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by pericentriolar material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and spindle microtubule formation remain unanswered, partly due to limited availability of molecular-resolution structural data inside cells.
View Article and Find Full Text PDFDuring cell division, NuMA orchestrates the focusing of microtubule minus-ends in spindle poles and cortical force generation on astral microtubules by interacting with dynein motors, microtubules, and other cellular factors. Here we used in vitro reconstitution, cryo-electron microscopy, and live cell imaging to understand the mechanism and regulation of NuMA. We determined the structure of the processive dynein/dynactin/NuMA complex (DDN) and showed that the NuMA N-terminus drives dynein motility in vitro and facilitates dynein-mediated transport in live cells.
View Article and Find Full Text PDFBio Protoc
November 2024
Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain.
The eukaryotic cytoskeleton is formed in part by microtubules, which are relatively rigid filaments with inherent structural polarity. One consequence of this polarity is that the two ends of a microtubule have different properties with important consequences for their cellular roles. These differences are often challenging to probe within the crowded environment of the cell.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, INRA, CNRS, Interdisciplinary Research Institute of Grenoble, Grenoble 38054, France.
The internal organization of cells is largely determined by the architecture and orientation of the microtubule network. Microtubules serve as polar tracks for the selective transport of specific molecular motors toward either their plus or minus ends. How both motors reciprocally move microtubules and organize the network's arrangement and polarity is unknown.
View Article and Find Full Text PDFJ Cell Biol
January 2025
Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!