The P23H mutation in rhodopsin (Rho(P23H)) is a prevalent cause of autosomal dominant retinitis pigmentosa. We examined the role of the ER stress proteins, Chop and Ask1, in regulating the death of rod photoreceptors in a mouse line harboring the Rho(P23H) rhodopsin transgene (GHL(+)). We used knockout mice models to determine whether Chop and Ask1 regulate rod survival or retinal degeneration. Electrophysiological recordings showed similar retinal responses and sensitivities for GHL(+), GHL(+)/Chop(-/-) and GHL(+)/Ask1(-/-) animals between 4-28 weeks, by which time all three mouse lines exhibited severe loss of retinal function. Histologically, ablation of Chop and Ask1 did not rescue photoreceptor loss in young animals. However, in older mice, a regional protective effect was observed in the central retina of GHL(+)/Chop(-/-) and GHL(+)/Ask1(-/-), a region that was severely degenerated in GHL(+) mice. Our results show that in the presence of the Rho(P23H) transgene, the rate of decline in retinal sensitivity is similar in Chop or Ask1 ablated and wild-type retinas, suggesting that these proteins do not play a major role during the acute phase of photoreceptor loss in GHL(+) mice. Instead they may be involved in regulating secondary pathological responses such as inflammation that are upregulated during later stages of disease progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921110 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083871 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!