The role of miRNA in motor neuron disease.

Front Cell Neurosci

Institute of Human Genetics, University of Cologne Cologne, Germany ; Institute for Genetics, University of Cologne Cologne, Germany.

Published: March 2014

microRNA is a subset of endogenous non-coding RNA. It binds to partially complementary sequences in mRNAs and inhibits mRNA translation by either blocking translational machinery or degrading mRNAs. It is involved in various cellular processes including cell cycle, development, metabolism, and synaptic plasticity. Dysregulation of miRNA expression and function is reported in various diseases including cancer, metabolic disorders as well as neurological disorders. In nervous system, miRNA related pathways play a very important role in development and function of neuronal cells. Moreover, numerous evidences suggest that dysregulated miRNA related pathways contribute to pathology of neurological disorders such as Alzheimer's disease, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Here, we review current knowledge about the role of miRNAs in motor neuron disorders, especially about two common diseases: SMA and ALS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906579PMC
http://dx.doi.org/10.3389/fncel.2014.00015DOI Listing

Publication Analysis

Top Keywords

motor neuron
8
neurological disorders
8
mirna pathways
8
role mirna
4
mirna motor
4
neuron disease
4
disease microrna
4
microrna subset
4
subset endogenous
4
endogenous non-coding
4

Similar Publications

Background: Cerebral palsy (CP) is a neurodevelopmental disorder and motor disorder syndrome. It has been confirmed that mesenchymal stem cells (MSCs) and mouse nerve growth factor (mNGF) can repair brain tissue damage and nerve injury; however, exosomes derived from healthy cells may have a comparable therapeutic potential as the cells themselves.

Objectives: The purpose of this study was to explore the improvement effect of human umbilical cord mesenchymal stem cell (hUC-MSCs)-derived exosomes on a CP model and determine whether there is a synergistic effect when combined with mNGF.

View Article and Find Full Text PDF

Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.

View Article and Find Full Text PDF

Background: Seipin is a protein encoded by the BSCL2 gene in humans and SEI1 gene in yeast, forming an Endoplasmic Reticulum (ER)-bound homo-oligomer. This oligomer is crucial in targeting ER-lipid droplet (LD) contact sites, facilitating the delivery of triacylglycerol (TG) to nascent LDs. Mutations in BSCL2, particularly N88S and S90L, lead to seipinopathies, which correspond to a cohort of motor neuron diseases (MNDs) characterized by the accumulation of misfolded N88S seipin into inclusion bodies (IBs) and cellular dysfunctions.

View Article and Find Full Text PDF

Enhancing Neuron Activity Promotes Functional Recovery by Inhibiting Microglia-Mediated Synapse Elimination After Stroke.

Stroke

January 2025

New Drug Screening Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.S., H.W., C.W., G.L., M.H., H.Z., F.H., H.L.).

Background: Activating glutamatergic neurons in the ipsilesional motor cortex can promote functional recovery after stroke. However, the underlying molecular mechanisms remain unclear. Clarifying key molecular mechanisms involved in recovery could help understand the development of neuromodulation strategies after stroke.

View Article and Find Full Text PDF

The transition from simple to complex multicellularity involves division of labor and specialization of cell types. In animals, complex sensory-motor systems are primarily built around specialized cells of muscles and neurons, though the evolutionary origins of these and their integration remain unclear. Here, to investigate sensory-behavior coupling in the closest relatives of animals, we established a line of the choanoflagellate, which stably expresses the calcium indicator RGECO1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!