Hsp90 chaperone inhibitor 17-AAG attenuates Aβ-induced synaptic toxicity and memory impairment.

J Neurosci

Neurodegenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, Department of Pharmacology and Anatomy & Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee 38163, and Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Published: February 2014

The excessive accumulation of soluble amyloid peptides (Aβ) plays a crucial role in the pathogenesis of Alzheimer's disease (AD), particularly in synaptic dysfunction. The role of the two major chaperone proteins, Hsp70 and Hsp90, in clearing misfolded protein aggregates has been established. Despite their abundant presence in synapses, the role of these chaperones in synapses remains elusive. Here, we report that Hsp90 inhibition by 17-AAG elicited not only a heat shock-like response but also upregulated presynaptic and postsynaptic proteins, such as synapsin I, synaptophysin, and PSD95 in neurons. 17-AAG treatment enhanced high-frequency stimulation-evoked LTP and protected neurons from synaptic damage induced by soluble Aβ. In AD transgenic mice, the daily administration of 17-AAG over 7 d resulted in a marked increase in PSD95 expression in hippocampi. 17-AAG treatments in wild-type C57BL/6 mice challenged by soluble Aβ significantly improved contextual fear memory. Further, we demonstrate that 17-AAG activated synaptic protein expression via transcriptional mechanisms through the heat shock transcription factor HSF1. Together, our findings identify a novel function of Hsp90 inhibition in regulating synaptic plasticity, in addition to the known neuroprotective effects of the chaperones against Aβ and tau toxicity, thus further supporting the potential of Hsp90 inhibitors in treating neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3921421PMC
http://dx.doi.org/10.1523/JNEUROSCI.0151-13.2014DOI Listing

Publication Analysis

Top Keywords

hsp90 inhibition
8
soluble aβ
8
17-aag
6
hsp90
5
synaptic
5
hsp90 chaperone
4
chaperone inhibitor
4
inhibitor 17-aag
4
17-aag attenuates
4
attenuates aβ-induced
4

Similar Publications

NVP-AUY922 relieves radiation-induced intestinal injury via regulating EPHX1.

Life Sci

January 2025

Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.

As a common side effect of radiotherapy, radiation-induced intestinal injury (RIII) greatly affects the prognosis of patients and the efficacy of radiotherapy. Current therapeutic strategies for RIII are still very limited. Thus, the identification of effective radioprotective agents is of great importance.

View Article and Find Full Text PDF

Synchronous Interference of Dual Metabolic Pathways Mediated by HS Gas/GOx for Augmenting Tumor Microwave Thermal Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH (UiO) to form UiO@Au-Pd (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC).

View Article and Find Full Text PDF

Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model.

View Article and Find Full Text PDF

Dual targeting of HSP90 and BCL-2 in breast cancer cells using inhibitors BIIB021 and ABT-263.

Breast Cancer Res Treat

January 2025

Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Turkey.

Purpose: The incidence of breast cancer has been increasing in recent years, and monotherapy approaches are not sufficient alone in the treatment of breast cancer. In the combined therapy approach, combining two or three different agents in lower doses can mitigate the side effects on living cells and tissues caused by high doses of chemical agents used alone. ABT-263 (navitoclax), a clinically tested Bcl-2 family protein inhibitor, has shown limited success in clinical trials due to the development of resistance to monotherapy in breast cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!