Blood transfusion has been described in ferrets as a treatment for oestrus-associated anaemia and as a life-saving therapy following trauma, iatrogenic (usually surgery-induced) anaemia, autoimmune haemolytic anaemia and pure red cell aplasia. Although blood banking is a common method for storage of feline and canine blood it is not currently done with ferret blood. The aim of this study was to determine the shelf-life of ferret blood using the anticoagulant citrate-phosphate-dextrose-solution with adenine (CPDA). Two male ferrets were used as blood donors. From each ferret, 6 ml of blood was taken from the cranial vena cava and stored in 10 ml polyethylene terephthalate (PET) blood tubes containing 1 ml of CPDA solution. Blood was taken from each ferret once per month for five months. These 10 blood samples were stored in a laboratory refrigerator at 4°C for four weeks. Biochemical (glucose, pH, lactate, potassium, sodium) and haematological (haematocrit, light microscopic blood smear examination) analyses were performed on the stored blood at days 0, 7, 14, 21 and 28. Biochemical analyses revealed a progressive decrease from day seven in the stored blood pH, glucose and sodium, with a concomitant increase in lactate and potassium. These results are attributable to the ongoing metabolism and deterioration of the red blood cells (RBC) while in storage, and are more rapid than described for human or canine stored blood. Haematological analyses revealed a progressive elevation of the haematocrit due to the appearance of hypochromic red blood cells and echinocytes beginning at day 7. Haemolysis was observed in the microhaematocrit capillary tube sample by day 21, and microscopic clots were visible on the blood smear by day 28. The low blood pH and the appearance of many hypochromic RBCs and some echinocytes from day 7 in CPDA-stored ferret blood, suggest stored ferret blood has a short shelf-life when compared with stored human or canine blood. We recommend that ferret blood stored in CPDA should not be used for transfusion after seven days of storage at 4°C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/vr.102127 | DOI Listing |
N Engl J Med
December 2024
From the Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University (J.H., X.L.), and the State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Institute of Hepatology, Nanfang Hospital (J.H.), Guangzhou, the Department of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University (W.Z.), the Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine (Q.X.), Roche Holding (Q.B., E.C.), Roche Research and Development Center (C.C., Y.H.), and Takeda APAC Biopharmaceutical Research and Development (Q.B.), Shanghai, the Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun (R.H.), the Center of Infectious Diseases, Laboratory of Infectious and Liver Disease, Institute of Infectious Diseases, West China Hospital, Sichuan University, Chengdu (H.T.), and the Department of Medicine and State Key Laboratory of Liver Research, Queen Mary Hospital, University of Hong Kong, Hong Kong (M.-F.Y.) - all in China; the Division of Infectious Diseases, University Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute, Servizo Galego de Saúde-Universidade de Vigo, Vigo, Spain (L.E.M.A.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital (S.-S.Y.), and the Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University (C.-Y.P.), Taichung, the Department of Internal Medicine, Changhua Christian Hospital, Changhua (W.-W.S.), Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung (W.-L.C.), and National Taiwan University Hospital, Taipei (J.-H.K.) - all in Taiwan; the Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea (D.J.K.); the HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Center and the Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok (A.A.), and the Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai (A.L.) - both in Thailand; Université de Paris-Cité, Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Centre de Recherche sur l'Inflammation, INSERM Unité Mixte de Recherche 1149, Paris (T.A.); F. Hoffmann-La Roche, Basel, Switzerland (F. Canducci, M.T.C., F. Chughlay, K.G., N.G., P.K., R.K., M.T.); Roche Products, Welwyn Garden City (S.D., V.P., B.S., R.U., C.W.), and ID Pharma Consultancy, Yelverton (C.W.) - both in the United Kingdom; Enthera Pharmaceuticals, Milan (F. Canducci); Parexel International, Hyderabad, India (A.P.); and the New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand (E.G.).
Background: Xalnesiran, a small interfering RNA molecule that targets a conserved region of the hepatitis B virus (HBV) genome and silences multiple HBV transcripts, may have efficacy, with or without an immunomodulator, in patients with chronic HBV infection.
Methods: We conducted a phase 2, multicenter, randomized, controlled, adaptive, open-label platform trial that included the evaluation of 48 weeks of treatment with xalnesiran at a dose of 100 mg (group 1), xalnesiran at a dose of 200 mg (group 2), xalnesiran at a dose of 200 mg plus 150 mg of ruzotolimod (group 3), xalnesiran at a dose of 200 mg plus 180 μg of pegylated interferon alfa-2a (group 4), or a nucleoside or nucleotide analogue (NA) alone (group 5) in participants with chronic HBV infection who had virologic suppression with NA therapy. The primary efficacy end point was hepatitis B surface antigen (HBsAg) loss (HBsAg level, <0.
mBio
January 2025
Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA.
Unlabelled: Due to its natural influenza susceptibility, clinical signs, transmission, and similar sialic acid residue distribution, the ferret is the primary animal model for human influenza research. Antibodies generated following infection of ferrets with human influenza viruses are used in surveillance to detect antigenic drift and cross-reactivity with vaccine viruses and circulating strains. Inoculation of ferrets, with over 1,500 human clinical influenza isolates (1998-2019) resulted in lower antibody responses (HI <1:160) to 86% (387 out of 448) influenza B viruses (IBVs) compared to 2.
View Article and Find Full Text PDFViruses
November 2024
Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
The Ebola virus (EBOV) causes severe disease in humans, and animal models are needed to evaluate the efficacy of vaccines and therapeutics. While non-human primate (NHP) and rodent EBOV infection models have been well characterized, there is a growing need for an intermediate model. Here, we provide the first report of a small-particle aerosol (AE) EBOV ferret model and disease progression compared with the intramuscular (IM) EBOV ferret model.
View Article and Find Full Text PDFSci Transl Med
December 2024
Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
The global spread of the highly pathogenic avian influenza (HPAI) A(H5N1) virus poses a serious pandemic threat, necessitating the swift development of effective vaccines. The success of messenger RNA (mRNA) vaccine technology in the COVID-19 pandemic, marked by its rapid development and scalability, demonstrates its potential for addressing other infectious threats, such as HPAI A(H5N1). We therefore evaluated mRNA vaccine candidates targeting panzootic influenza A(H5) clade 2.
View Article and Find Full Text PDFComp Immunol Microbiol Infect Dis
January 2025
Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Spain; Department de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain.
Evidence of SARS-CoV-2 infections in different animal species raises concerns about the potential for animal reservoirs and transmission to humans. Here, we evaluate the exposure of exotic pet species to this virus throughout the early years of the pandemic (2020 - 2022) in southern Spain. A total of 180 exotic pets (126 domestic rabbits, 31 ferrets, and 23 rodents) were analyzed for antibodies against SARS-CoV-2 using two different ELISAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!