Telomeric noncoding RNA: telomeric repeat-containing RNA in telomere biology.

Wiley Interdiscip Rev RNA

Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Canada.

Published: December 2014

Telomeres are nucleoprotein structures that cap the ends of eukaryotic chromosomes, protecting them from degradation and activation of DNA damage response. For this reason, functional telomeres are vital to genome stability. For years, telomeres were assumed to be transcriptionally silent, because of their heterochromatic state. It was only recently shown that, in several organisms, telomeres are transcribed, giving rise to a long noncoding RNA (lncRNA) called telomeric repeat-containing RNA (TERRA). Several lines of evidence now indicate that TERRA molecules play crucial roles in telomere homeostasis and telomere functions. Recent studies have shown that the expression and regulation of TERRA are dynamically controlled by each chromosome end. TERRA has been involved in the regulation of telomere length, telomerase activity, and heterochromatin formation at telomeres. The correct regulation of the telomeric transcripts may be essential to genome stability, and altered TERRA levels associate with tumorigenesis and cellular senescence. Thus, the study of the molecular mechanisms of TERRA biogenesis and function may advance the understanding of telomere-related diseases, including cancer and aging.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wrna.1220DOI Listing

Publication Analysis

Top Keywords

noncoding rna
8
telomeric repeat-containing
8
repeat-containing rna
8
genome stability
8
terra
6
telomeres
5
telomeric
4
telomeric noncoding
4
rna
4
rna telomeric
4

Similar Publications

Implications of the SNHG10/miR-665/RASSF5/NF-κB pathway in dihydromyricetin-mediated ischemic stroke protection.

PeerJ

December 2024

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.

Ischemic stroke (IS) remains a leading cause of disability and mortality worldwide, and inflammation and oxidative stress play significant roles in its pathogenesis. This study investigates the effects of dihydromyricetin (DHM) on IS using RT-qPCR and western blot with SH-SY5Y cells, focusing on its effects on the small nucleolar RNA host gene 10 (SNHG10)/microRNA (miR)-665/Ras association domain family member 5 (RASSF5) axis and nuclear factor-kappa B (NF-κB) signaling. In addition, the effects of the SNHG10/miR-665/RASSF5 axis on SH-SY5Y cell activity, apoptosis, oxidative stress, and inflammatory markers were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assays.

View Article and Find Full Text PDF

Efficacy and Fate of RNA Interference Molecules in the Green Pea Aphid, Acyrthosiphon pisum.

Arch Insect Biochem Physiol

December 2024

Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA.

RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest.

View Article and Find Full Text PDF

Background: Bladder cancer (BC) is a malignant tumor that begins in the cells of the bladder, characterized by poor cell differentiation and strong invasion capacity, with a high incidence rate. Identifying key molecules that enhance BC cells' cisplatin sensitivity can help improve the clinical efficacy of BC treatment. Hence, this study aimed to determine the expression level of long non-coding RNA (lncRNA) ADAM Metallopeptidase with Thrombospondin Type 1 Motif 9 Antisense RNA 1 () in BC and explore its related mechanism underlying the amplification of cisplatin sensitivity.

View Article and Find Full Text PDF

Background: The tumor suppressor wild-type p53 is known for its role in inducing apoptosis in tumor cells. This study investigated the relationship between wild-type p53 and protein phosphatase 1 (PP1) and caspase in promoting apoptosis of breast cancer cells.

Methods: Human breast cancer cell lines MCF-7 and MDA-MB-231 obtained from the American Type Culture Collection were used in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!