Neural stem cells (NSCs) reside in a vascular microenvironment termed the "NSC niche." Blood vessels in the NSC niche play an important role in maintaining an appropriate balance between NSC self-renewal and differentiation that serves to maintain homeostasis. Understanding the role of brain vessels in the NSC niche will facilitate basic research in neurogenesis and vasculogenesis as well as aid the development of potential therapies for degenerative disorders. Here, an in vitro-reconstituted NSC-vascular niche consisting of a 3D brain vasculature and extracellular matrix (ECM) microenvironment that allows NSCs to adopt physiologically relevant phenotypes through the combined effects of ECM components, chemical gradients, and signaling effectors from the brain vasculature is described. The reconstituted niche can provide precise spatiotemporal control of the NSC niche, regulating self-renewal, proliferation and colony formation of NSCs, and suppressing neuronal generation but promoting NSC differentiation into astrocytes and oligodendrocytes. It is proved that Notch effectors regulate both the astrocyte differentiation and NSC self-renewal, but the astrocyte differentiation is more active in NSCs in close proximity to brain vasculature. A potential role of the other vascular microenvironmental factor of pigment epithelium-derived factor from brain vasculature in the regulation of NSC self-renewal is also proved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.201300569 | DOI Listing |
Int J Mol Sci
December 2024
Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan.
Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB) exacerbating damage by allowing harmful substances and immune cells to infiltrate spinal neural tissues from the vasculature. This leads to inflammation, oxidative stress, and impaired axonal regeneration. The BSCB, essential for maintaining spinal cord homeostasis, is structurally similar to the blood-brain barrier.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland.
Numerous compounds involved in the regulation of the cardiovascular system are also engaged in the control of metabolism. This review gives a survey of literature showing that arginine vasopressin (AVP), which is an effective cardiovascular peptide, exerts several direct and indirect metabolic effects and may play the role of the link adjusting blood supply to metabolism of tissues. Secretion of AVP and activation of AVP receptors are regulated by changes in blood pressure and body fluid osmolality, hypoxia, hyperglycemia, oxidative stress, inflammation, and several metabolic hormones; moreover, AVP turnover is regulated by insulin.
View Article and Find Full Text PDFJ Neuroendocrinol
January 2025
Department of Psychology, Columbia University, New York, New York, USA.
Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Physiology, New York Medical College, Valhalla, NY, USA.
Non-invasive, low intensity focused ultrasound is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported.
View Article and Find Full Text PDFOper Neurosurg (Hagerstown)
January 2025
Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
Background And Objectives: The study aimed to investigate the potential pathogenesis and present an implant retention procedure for patients with titanium mesh exposure after cranioplasty.
Methods: The clinical data were obtained from 26 consecutive cases with titanium mesh exposure who underwent surgical treatment between 2018 and 2023. These patients' medical records, scalp photographs, operative notes, and outcomes were retrospectively analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!