Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A cardinal challenge in epidemiological and ecological modelling is to develop effective and easily deployed tools for model assessment. The availability of such methods would greatly improve understanding, prediction and management of disease and ecosystems. Conventional Bayesian model assessment tools such as Bayes factors and the deviance information criterion (DIC) are natural candidates but suffer from important limitations because of their sensitivity and complexity. Posterior predictive checks, which use summary statistics of the observed process simulated from competing models, can provide a measure of model fit but appropriate statistics can be difficult to identify. Here, we develop a novel approach for diagnosing mis-specifications of a general spatio-temporal transmission model by embedding classical ideas within a Bayesian analysis. Specifically, by proposing suitably designed non-centred parametrization schemes, we construct latent residuals whose sampling properties are known given the model specification and which can be used to measure overall fit and to elicit evidence of the nature of mis-specifications of spatial and temporal processes included in the model. This model assessment approach can readily be implemented as an addendum to standard estimation algorithms for sampling from the posterior distributions, for example Markov chain Monte Carlo. The proposed methodology is first tested using simulated data and subsequently applied to data describing the spread of Heracleum mantegazzianum (giant hogweed) across Great Britain over a 30-year period. The proposed methods are compared with alternative techniques including posterior predictive checking and the DIC. Results show that the proposed diagnostic tools are effective in assessing competing stochastic spatio-temporal transmission models and may offer improvements in power to detect model mis-specifications. Moreover, the latent-residual framework introduced here extends readily to a broad range of ecological and epidemiological models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928939 | PMC |
http://dx.doi.org/10.1098/rsif.2013.1093 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!