The life cycle of Plasmodium falciparum is very complex, with an erythrocytic stage that involves the invasion of red blood cells and the survival and growth of the parasite within the host. Over the past several decades, numbers of studies have shown that proteins exported by P. falciparum to the surface of infected red blood cells play a critical role in recognition and interaction with host receptors and are thus essential for the completion of the life cycle of P. falciparum. However, little is known about long noncoding RNAs (lncRNAs). In this study, we designed a computational pipeline to identify new lncRNAs of P. falciparum from published RNA-seq data and analyzed their sequences and expression features. As a result, 164 novel lncRNAs were found. The sequences and expression features of P. falciparum lncRNAs were similar to those of humans and mice: there was a lack of sequence conservation, low expression levels, and high expression coefficient of variance and co-expression with nearby coding sequences in the genome. Next, a coding/noncoding gene co-expression network for P. falciparum was constructed to further annotate the functions of novel and known lncRNAs. In total, the functions of 69 lncRNAs, including 44 novel lncRNAs, were annotated. The main functions of the lncRNAs included metabolic processes, biosynthetic processes, regulation of biological processes, establishment of localization, catabolic processes, cellular component organization, and interspecies interactions between organisms. Our results will provide clues to further the investigation of interactions between human hosts and parasites and the mechanisms of P. falciparum infection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-014-3765-4DOI Listing

Publication Analysis

Top Keywords

novel lncrnas
12
falciparum
8
plasmodium falciparum
8
falciparum long
8
long noncoding
8
noncoding rnas
8
rna-seq data
8
life cycle
8
red blood
8
blood cells
8

Similar Publications

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a degenerative illness that accounts for the common type of dementia among adults over the age of 65. Despite extensive studies on the pathogenesis of the disease, early diagnosis of AD is still debatable. In this research, we performed bioinformatics approaches on the AD-related E-MTAB 6094 dataset to uncover new potential biomarkers for AD diagnosis.

View Article and Find Full Text PDF

Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.

View Article and Find Full Text PDF

Nucleolar protein PEXF controls ribosomal RNA synthesis and pluripotency exit.

Dev Cell

December 2024

Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China. Electronic address:

Maintenance and exit from pluripotency of embryonic stem cells (ESCs) are controlled by highly coordinated processes of protein synthesis and ribosome biogenesis (RiBi). ESCs are characterized by low rates of global protein synthesis and high levels of RiBi. Transient reduction of RiBi is a characteristic molecular event during the exit from pluripotency, of which the regulatory mechanism is unclear.

View Article and Find Full Text PDF

Transcriptome-derived evidence reveals the regulatory network in the skeletal muscle of the fast-growth mstnb male tilapia.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China. Electronic address:

Myostatin (Mstn) negatively regulates muscle growth and Mstn deficiency induced "double-skeletal muscle" development in vertebrates, including tilapias. In this study, we performed a transcriptomic analysis of skeletal muscle from both wild-type and mstnb males to investigate the molecular mechanisms underlying skeletal muscle hypertrophy in mstnb mutants. We identified 4697 differentially expressed genes (DEGs), 113 differentially expressed long non-coding RNAs (DE lncRNAs), 211 differentially expressed circular RNAs (DE circRNAs), and 98 differentially expressed microRNAs (DE miRNAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!