Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function.

J Cell Sci

Instituto de Biología Celular y Neurociencias (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires CP 1121, Argentina.

Published: April 2014

Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.140780DOI Listing

Publication Analysis

Top Keywords

axonal transport
12
transport
9
fast axonal
8
proteasome
8
proteasome complex
8
depends membrane
8
motor function
8
neurodegenerative diseases
8
reveal fast
8
fluorescent proteasomes
8

Similar Publications

Background: Chemotherapy-induced cognitive impairment (CICI) is a commonly reported neurotoxic side effect of chemotherapy, occurring in up to 75% cancer patients. Connections between chemo-treatment and increased risk of dementia have been reported. Mechanistically, chemotherapy treatment contributes to an accelerated aging phenotype in the brain through induction of pathogenic tau, disruption of neuronal integrity, reactive gliosis and neuroinflammation.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is characterized by neocortical dissemination of neurofibrillary tangles (NFTs) while primary age-related tauopathy (PART) has NFTs largely confined to the hippocampus and adjacent structures. Thus, PART and AD represent two extremes of a spectrum of NFT spread. We investigated epigenetic mechanisms of interindividual variation in NFT spread.

View Article and Find Full Text PDF

The role of RGC degeneration in the pathogenesis of glaucoma.

Int J Biol Sci

January 2025

Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun 130000, Jilin, China.

Glaucoma is a neurodegenerative disorder marked by the loss of retinal ganglion cells (RGCs) and axonal degeneration, resulting in irreversible vision impairment. While intraocular pressure (IOP) is presently acknowledged as the sole modifiable risk factor, the sensitivity of RGCs to IOP varies among individuals. Consequently, progressive vision loss may ensue even when IOP is effectively managed.

View Article and Find Full Text PDF

Stabilization of mitochondria-associated endoplasmic reticulum membranes regulates Aβ generation in a three-dimensional neural model of Alzheimer's disease.

Alzheimers Dement

December 2024

Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.

Introduction: We previously demonstrated that regulating mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) affects axonal Aβ generation in a well-characterized three-dimensional (3D) neural Alzheimer's disease (AD) model. MAMs vary in thickness and length, impacting their functions. Here, we examined the effect of MAM thickness on Aβ in our 3D neural model of AD.

View Article and Find Full Text PDF

Neuronal activity inhibits mitochondrial transport only in synaptically connected segments of the axon.

Front Cell Neurosci

December 2024

Lab for Enteric NeuroScience (LENS), TARGID, KU Leuven, Leuven, Belgium.

Due to their large scale and uniquely branched architecture, neurons critically rely on active transport of mitochondria in order to match energy production and calcium buffering to local demand. Consequently, defective mitochondrial trafficking is implicated in various neurological and neurodegenerative diseases. A key signal regulating mitochondrial transport is intracellular calcium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!