Nuclear factor E2 p45-related factor 2 (Nrf2) is a transcription factor involved in the expression of cytoprotective genes induced by external stresses. We investigated the role of Nrf2 in osteoclast and osteoblast differentiation. Nrf2 knockdown or deletion increased osteoclastic differentiation from bone marrow-derived macrophages (BMMs) through the upregulation of NF-κB, c-Fos, and NFATc1 transcription factors. Nrf2 also inhibited osteoblast differentiation and mineralization via suppression of key regulatory proteins, such as Runx2, osteocalcin, and osterix. Micro-computed tomography and histomorphometric analyses showed an increase in bone mass of Nrf2 knockout compared to that of wild type mice. In addition, the mineral apposition rate and the number of osteoblasts in bone were higher in Nrf2 knockout mice. However, bone resorption parameters, namely DPD and CTX levels, were not affected by Nrf2 deletion. In a coculture condition where calvarial osteoblasts and BMMs from wild type and Nrf2 knockout mice were grown, deletion of Nrf2 in osteoblasts markedly reduced osteoclast formation. This effect was due to an increase in OPG expression in Nrf2 knockout osteoblasts. Taken as a whole, these results indicate that Nrf2 is intrinsically inhibitory to both osteoblast and osteoclast differentiation but its effect on osteoblasts is dominant to its effect on osteoclasts in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2014.01.025 | DOI Listing |
Int Immunopharmacol
January 2025
Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China. Electronic address:
Ferroptosis plays a key role in cisplatin-induced acute kidney injury (AKI). Bergenin, which is extracted from Ardisiae Japonicae Herba and has long been used in folk tea and herbal tea drinks, is known to activate Nrf2 and has anti-inflammatory and antioxidant properties, however, its protective influence on CI-AKI has not been elucidated. We used models of cisplatin-induced nephrotoxicity in vitro and CI-AKI models in vivo.
View Article and Find Full Text PDFBlood
January 2025
Graduate School of Medicine and Frontier Biosciences, Osaka University, Japan.
The maintenance of cellular redox balance is crucial for cell survival and homeostasis and is disrupted with aging. Selenoproteins, comprising essential antioxidant enzymes, raise intriguing questions about their involvement in hematopoietic aging and potential reversibility. Motivated by our observation of mRNA downregulation of key antioxidant selenoproteins in aged human hematopoietic stem cells (HSCs) and previous findings of increased lipid peroxidation in aged hematopoiesis, we employed tRNASec gene (Trsp) knockout (KO) mouse model to simulate disrupted selenoprotein synthesis.
View Article and Find Full Text PDFToxics
December 2024
State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China.
Background And Aims: Cell-cycle-related and expression elevated protein in tumor (CREPT, also named RPRD1B) is highly expressed in tumors and functions to promote tumorigenesis. However, the role of CREPT in the pathophysiology of acute liver injury is limited. Here, we demonstrate that CREPT plays an essential role during acute liver injury.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan.
Although osteoclasts play crucial roles in the skeletal system, the mechanisms that underlie oxidative stress during osteoclastogenesis remain unclear. The transcription factor Nrf2 and its suppressor, Keap1, function as central mediators of oxidative stress. To further elucidate the function of Nrf2/Keap1-mediated oxidative stress regulation in osteoclastogenesis, DNA microarray analysis was conducted in this study using wild-type (WT), knockout ( KO), and knockout ( KO) osteoclasts.
View Article and Find Full Text PDFCell Prolif
January 2025
Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
Tooth root development is a complex process essential for tooth function, yet the role of root dentin development in tooth morphogenesis is not fully understood. Optineurin (OPTN), linked to bone disorders like Paget's disease of bone (PDB), may affect tooth root development. In this study, we used single-cell sequencing of embryonic day 16.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!