The space around the Earth is filled with man-made objects, which orbit the planet at altitudes ranging from hundreds to tens of thousands of kilometers. Keeping an eye on all objects in Earth's orbit, useful and not useful, operational or not, is known as Space Surveillance. Due to cost considerations, the space surveillance solutions beyond the Low Earth Orbit region are mainly based on optical instruments. This paper presents a solution for real-time automatic detection and ranging of space objects of altitudes ranging from below the Medium Earth Orbit up to 40,000 km, based on two low cost observation systems built using commercial cameras and marginally professional telescopes, placed 37 km apart, operating as a large baseline stereovision system. The telescopes are pointed towards any visible region of the sky, and the system is able to automatically calibrate the orientation parameters using automatic matching of reference stars from an online catalog, with a very high tolerance for the initial guess of the sky region and camera orientation. The difference between the left and right image of a synchronized stereo pair is used for automatic detection of the satellite pixels, using an original difference computation algorithm that is capable of high sensitivity and a low false positive rate. The use of stereovision provides a strong means of removing false positives, and avoids the need for prior knowledge of the orbits observed, the system being able to detect at the same time all types of objects that fall within the measurement range and are visible on the image.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958257 | PMC |
http://dx.doi.org/10.3390/s140202703 | DOI Listing |
Microsc Res Tech
January 2025
AIDA Lab. College of Computer and Information Sciences (CCIS), Prince Sultan University, Riyadh, Saudi Arabia.
The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.
View Article and Find Full Text PDFCardiovasc Eng Technol
January 2025
Department of Research and Development, Nonprofit Organization of Research Institute of Life Benefit, Sapporo, Hokkaido, 005-0006, Japan.
Purpose: Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronics and Communication Engineering, Sri Ramakrishna Institute of Technology, Coimbatore, Tamilnadu, India, 641010.
The global spread of COVID-19, particularly through cough symptoms, necessitates efficient diagnostic tools. COVID-19 patients exhibit unique cough sound patterns distinguishable from other respiratory conditions. This study proposes an advanced framework to detect and predict COVID-19 using deep learning from cough audio signals.
View Article and Find Full Text PDFPLoS One
January 2025
Electrical and Computer Engineering, University of Denver, Denver, Colorado, United States of America.
Amino acid identification is crucial across various scientific disciplines, including biochemistry, pharmaceutical research, and medical diagnostics. However, traditional methods such as mass spectrometry require extensive sample preparation and are time-consuming, complex and costly. Therefore, this study presents a pioneering Machine Learning (ML) approach for automatic amino acid identification by utilizing the unique absorption profiles from an Elliptical Dichroism (ED) spectrometer.
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
January 2025
Department of Computer Science, Johns Hopkins University, Baltimore, MD.
Artificial intelligence (AI) scribe applications in the healthcare community are in the early adoption phase and offer unprecedented efficiency for medical documentation. They typically use an application programming interface with a large language model (LLM), for example, generative pretrained transformer 4. They use automatic speech recognition on the physician-patient interaction, generating a full medical note for the encounter, together with a draft follow-up e-mail for the patient and, often, recommendations, all within seconds or minutes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!