Disposable chemical sensors and biosensors made on cellulose paper.

Nanotechnology

Department of Mechanical Engineering, Inha University, Incheon 402-751, Korea.

Published: March 2014

Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/25/9/092001DOI Listing

Publication Analysis

Top Keywords

cellulose paper
8
polymer-based sensors
8
sensors
6
disposable chemical
4
chemical sensors
4
sensors biosensors
4
cellulose
4
biosensors cellulose
4
paper sensors
4
sensors based
4

Similar Publications

Per- and polyfluoroalkyl substances (PFAS) are a widely used class of synthetic chemicals that pose a significant global environmental and health threat due to their persistent and bioaccumulation toxicity caused by strong C-F bonds in their structures. PFAS usually exist in trace concentrations in environmental water bodies, which poses great challenges for environmental analysis. In this study, environmentally friendly cellulose was modified with polyaniline through in situ oxidative polymerization, and used as the filter paper for solid-phase extracting 23 PFAS in water.

View Article and Find Full Text PDF

The anthocyanin-loaded films based on natural polymers as pH-responsive indicator are widely applied in the food preservation. However, the low mechanical strength and storage stability limited their practical application, there is an urgent demand to improve the performance of anthocyanin-loaded films. In order to avoid affecting the color indication of anthocyanins, we explored the effect of eight kinds of white nanomaterials on improving the performance of films.

View Article and Find Full Text PDF

Durable PVA-based hydrogel sponge with cellulose whiskers embedded in the 3D interconnected channels for efficient oil/water separation.

Carbohydr Polym

March 2025

School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China. Electronic address:

Superhydrophilic hydrogel was typically used as the membrane coating on various substrates for oil/water separation. Nevertheless, these coatings may suffer from such limitations as poor adhesion strength and abrasion-resistance. Thus, the facile construction of hydrogel sponge with 3D connecting channels would be an ideal choice.

View Article and Find Full Text PDF

Hazy transparent cellulose nanocrystal-based films with tunable structural colors.

Carbohydr Polym

March 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:

Cellulose nanocrystals (CNCs) are powerful biosourced nanomaterials for the construction of chiral photonic films. While various techniques have been used to enrich the optical properties of such systems, surface roughness engineering has yet to be exploited to significantly modify their optical properties. In this work, by using vacuum filtration-assisted self-assembly, CNCs are densely packed into films with high optical transparency.

View Article and Find Full Text PDF

A mechanically robust chitosan-based macroporous foam for sustainable Se(IV) elimination from wastewater.

Carbohydr Polym

March 2025

College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; College of Chemical Engineering and Technology, Yantai Nanshan University, Yantai 265713, China. Electronic address:

The contamination of water resources by selenium (Se), particularly in the highly toxic Se(IV) oxidation state, poses a significant environmental and public health concern due to its detrimental impacts on humans and aquatic ecosystems. In this work, we report a novel composite foam (CFC) by incorporating chitosan (CS), cellulose nanofibers (CNF) and iron oxyhydroxide (FeOOH) nanoparticles through a one-pot fabrication process. The CFC foam features a three-dimensional porous structure, conferring both exceptional mechanical strength and superior adsorption performance for Se(IV), with a maximum equilibrium adsorption capacity of 90 mg/g achieved within 3 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!