Background: Homologous recombination mediated gene targeting is still too inefficient to be applied extensively in genomics and gene therapy. Although sequence-specific nucleases could greatly stimulate gene targeting efficiency, the off-target cleavage sites of these nucleases highlighted the risk of this strategy. Adeno-associated virus (AAV)-based vectors are used for specific gene knockouts, since several studies indicate that these vectors are able to induce site-specific genome alterations at high frequency. Since each targeted event is accompanied by at least ten random integration events, increasing our knowledge regarding the mechanisms behind these events is necessary in order to understand the potential of AAV-mediated gene targeting for therapy application. Moreover, the role of AAV regulatory proteins (Rep) and inverted terminal repeated sequences (ITRs) in random and homologous integration is not completely known. In this study, we used the yeast Saccharomyces cerevisiae as a genetic model system to evaluate whether the presence of ITRs in the integrating plasmid has an effect on gene targeting and random integration.
Results: We have shown that the presence of ITRs flanking a gene targeting vector containing homology to its genomic target decreased the frequency of random integration, leading to an increase in the gene targeting/random integration ratio. On the other hand, the expression of Rep proteins, which produce a nick in the ITR, significantly increased non-homologous integration of a DNA fragment sharing no homology to the genome, but had no effect on gene targeting or random integration when the DNA fragment shared homology with the genome. Molecular analysis showed that ITRs are frequently conserved in the random integrants, and that they induce rearrangements.
Conclusions: Our results indicate that ITRs may be a useful tool for decreasing random integration, and consequently favor homologous gene targeting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925961 | PMC |
http://dx.doi.org/10.1186/1471-2199-15-5 | DOI Listing |
Int J Biol Macromol
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China. Electronic address:
R-loops, three-stranded nucleic acid structures composed of RNA-DNA hybrids, are increasingly recognized as central regulators of genomic stability and transcription. These structures play critical roles across various cellular processes, including DNA replication, repair, and gene regulation, with significant implications for stem cell biology and disease pathogenesis. This review comprehensively explores the molecular underpinnings of R-loop formation, emphasizing the dual nature of R-loops in both facilitating normal cellular functions and contributing to genomic instability.
View Article and Find Full Text PDFPharmacol Res
January 2025
State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China. Electronic address:
Numerous studies conducted in recent years indicate that mammalian E3 ubiquitin ligases serve as key regulators in the maintenance of cellular homeostasis by targeting the ubiquitination of substrate proteins and activating downstream signaling pathways. SYVN1, an E3 ubiquitin ligase, is characterized by its significant functions in regulating various biological processes, including molecular mechanisms related to gene expression, signaling pathways, and cell death, among others. Consequently, SYVN1 plays a crucial role in both normal human physiology and the pathogenesis of various diseases, such as oncogenesis, cardiovascular disorders, immune regulation, skeletal anomalies, and neurological diseases.
View Article and Find Full Text PDFCurr Res Transl Med
January 2025
Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China. Electronic address:
Background: Almost all multiple myeloma (MM) patients will eventually develop disease that has relapsed with or become refractory to current therapeutic regimes. However, the pervious clinical parameters have been proved inaccurate for defining MM relapse, and molecular targets have become the focuses of interests. Prognostic predictions based on molecular targets have been more effective to this day.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain. Electronic address:
Epigenetic alterations are hallmarks of cancer, with histone modifiers playing critical roles in gene transcription, DNA homeostasis, and other nuclear functions. Lysine-specific demethylase 1 (LSD1), a key regulator of H3K4 methylation, has emerged as a promising pharmacological target in cancer treatment, including leukemia. Acute lymphoblastic leukemia (ALL), the most common pediatric cancer, remains a significant therapeutic challenge due to limited understanding of how epigenetic therapy impacts leukemia dissemination.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, P.R. China. Electronic address:
Menin is a scaffold protein encoded by the Men1 gene, and it interacts with a variety of chromatin regulators to activate or repress cellular processes. The potential importance of menin in immune regulation remains unclear. Here, we report that myeloid deletion of Men1 results in the development of spontaneous pulmonary alveolar proteinosis (PAP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!