Aim: Postnatal depression has demonstrated long-term consequences on child cognitive and emotional development; however, the link between maternal and child pathology has not been clearly identified. We conducted a prospective study using self-rating questionnaires to clarify the association between bonding disorder and maternal mood during pregnancy and after childbirth.

Methods: A total of 389 women participated in this study and completed questionnaires. Participants were asked to complete the Edinburgh Postnatal Depression Scale (EPDS) and the Mother-to-Infant Bonding Scale four times during pregnancy and the postpartum period.

Results: We found statistically significant weak to moderate correlations (r = 0.14-0.39) between the EPDS and Mother-to-Infant Bonding Scale scores at each testing period. Women who experienced low mood tended to have stronger bonding disorder. Furthermore, the effectiveness of attachment between the mother and child was closely related to the mood of the mother as measured by the EPDS.

Conclusion: We observed different patterns of bonding and maternal mood. Distinct subtypes regarding maternal mood and formation of mother-to-infant attachment suggests that analysis of bonding disorder should be performed considering the course of maternal depressive symptoms.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pcn.12171DOI Listing

Publication Analysis

Top Keywords

bonding disorder
12
maternal mood
12
maternal depressive
8
pregnancy postpartum
8
postnatal depression
8
epds mother-to-infant
8
mother-to-infant bonding
8
bonding scale
8
bonding
6
maternal
5

Similar Publications

Determinants of vacancy formation and migration in high-entropy alloys.

Sci Adv

January 2025

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.

Vacancies are crucial for the radiation resistance, strength, and ductility of high-entropy alloys (HEAs). However, complex electronic interactions resulting from chemical disorder prohibit the quantification of vacancy formation energy () and migration barriers (). Herein, we propose an electronic descriptor χ (electronegativity χ and valence-electron number ) to quantify the bonding strength of constituents on the basis of the tight-binding model, which allows us to build analytical models to achieve the site-to-site quantification of and .

View Article and Find Full Text PDF

Advances in Functional Nucleic Acid SERS Sensing Strategies.

ACS Sens

January 2025

Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.

Functional nucleic acids constitute a distinct category of nucleic acids that diverge from conventional nucleic acid amplification methodologies. They are capable of forming intricate hybrid structures through Hoogsteen and reverse Hoogsteen hydrogen bonding interactions between double-stranded and single-stranded DNA, thereby broadening the spectrum of DNA interactions. In recent years, functional DNA/RNA-based surface-enhanced Raman spectroscopy (SERS) has emerged as a potent platform capable of ultrasensitive and multiplexed detection of a variety of analytes of interest.

View Article and Find Full Text PDF

Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs.

View Article and Find Full Text PDF

A Review on the Extraction, Structural Characterization, Function, and Applications of Peptidoglycan.

Macromol Rapid Commun

January 2025

School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.

Peptidoglycan (PGN) is the primary component of bacterial cell walls, consisting of linear glycan chains formed by alternating linkages of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) through glycosidic bonds. It exhibits biological activity in various aspects, making it a biologically significant macromolecule with extensive industrial application. This review aims to explore the latest research advancements in the extraction techniques, structural characterization, functions, and applications of PGN.

View Article and Find Full Text PDF

Papillary thyroid cancer (PTC) is often characterized by indolent behavior, small tumors with slow cell proliferation and a tendency to metastasize to cervical lymph node simultaneously, and the molecular mechanisms underlying that remain poorly understood. In this study, FN1 was the hottest gene of PTC and distinctive expression in PTC cells. FN1 deficiency severely inhibited the p53 signaling pathway, especially cyclin proteins, resulting in increased cell growth but hampered invasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!