Objective: To clarify the protective roles of compatibility of geniposide and ginsenoside (Rg1) in regulating ischemia injured microglia homeostasis by comparing the difference in regulatory roles of geniposide, Rg1, or ginsenoside + Rg1 in balancing secretion of oxygen glucose deprivation induced microglia inflammatory cytokines.

Methods: The mimic ischemia injured microglia model was induced by oxygen-glucose deprivation (OGD). Then geniposide, Rg1, or ginsenoside + Rg1 (Tongluo Jiunao Injection, TJI) was respectively added. The NO content was determined by Griess Reagent. The cyto activity was detected using cell count kit. Contents of TNF-alpha and TGF-beta and their expression levels were detected by ELISA and Western blot.

Results: Geniposide + Rg1 could significantly inhibit the release of NO, elevate the TGF-beta level, and decrease the content of TNF-alpha without influencing the cell survival. The two active ingredients played different therapeutic roles. The compatible use was obviously superior to use any one of the two active ingredients alone.

Conclusions: Geniposide, Rg1, or Ginsenoside + Rg1 had regulating roles in balancing ischemia injured microglia homeostasis. Its mechanisms might be related to up-regulating the TGF-beta expression and down-regulating TNF-alpha expression.

Download full-text PDF

Source

Publication Analysis

Top Keywords

injured microglia
16
ginsenoside rg1
16
geniposide rg1
16
ischemia injured
12
rg1 ginsenoside
12
geniposide ginsenoside
8
regulating roles
8
microglia inflammatory
8
rg1
8
rg1 regulating
8

Similar Publications

Shh Protects the Injured Spinal Cord in Mice by Promoting the Proliferation and Inhibiting the Apoptosis of Nerve Cells via the Gli1-TGF-β1/ERK Axis.

Cell Biochem Funct

January 2025

Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Spinal cord injury (SCI) is a common neurological trauma that cannot be completely cured with surgical techniques and medications. In this study, we established a mouse SCI model and used an adeno-associated virus (AAV) to achieve the high expression of sonic hedgehog (Shh) at the injury site to further investigate the therapeutic effect and mechanism of Shh on SCI. The results of the present study show that Shh may promote motor function recovery.

View Article and Find Full Text PDF

Inflammation is a major mechanism of photoreceptor cell death in the retina during macular degeneration leading to the blindness. In this study, we investigated the role of the kinase molecule Zap70, which is an inflammatory regulator of the systemic immune system, to elucidate the control mechanism of inflammation in the retina. We observed activated microglial cells migrated and populated the retinal layer following blue LED-induced photoreceptor degeneration and activated microglial cells in the LED-injured retina expressed Zap70, unlike the inactive microglial cells in the normal retina.

View Article and Find Full Text PDF

Nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells from mouse and human have been shown to differentiate into neurons, glia, keratinocytes, smooth muscle cells, cardiac muscle cells, and melanocytes in vitro. HAP stem cells have promoted the recovery of peripheral nerve and spinal cord injuries in mouse models by differentiating into glial fibrillary acidic protein (GFAP)-positive Schwann cells. HAP stem cells enclosed on polyvinylidene fluoride membranes (PFM) were transplanted into the severed thoracic spinal cord of nude mice.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the leading public health concerns in the world. Therapeutic hypothermia is routinely used in severe TBI, and pathophysiological hyperthermia, frequently observed in TBI patients, has an unclear impact on drug transport in the injured brain due to a lack of study on its effects. We investigated the effect of post-traumatic therapeutic hypothermia at 33°C and pathophysiological hyperthermia at 39°C on brain transport and cell uptake of neuroprotectants after TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!