Purpose: Following a previous study that demonstrated a correlation between rhodopsin stability and the severity of retinitis pigmentosa (RP), we investigated whether predictions of severity can be improved with a regional analysis of this correlation. The association between changes to the stability of the protein and the relative amount of rhodopsin reaching the plasma membrane was assessed.

Methods: Crystallography-based estimations of mutant rhodopsin stability were compared with descriptions in the scientific literature of the visual function of mutation carriers to determine the extent of associations between rhodopsin stability and clinical phenotype. To test the findings of this analysis, three residues of a green fluorescent protein (GFP) tagged rhodopsin plasmid were targeted with site-directed random mutagenesis to generate mutant variants with a range of stability changes. These plasmids were transfected into HEK-293 cells, and then flow cytometry was used to measure rhodopsin on the cells' plasma membrane. The GFP signal was used to measure the ratio between this membrane-bound rhodopsin and total cellular rhodopsin. FoldX stability predictions were then compared with the surface staining data and clinical data from the database to characterize the relationship between rhodopsin stability, the severity of RP, and the expression of rhodopsin at the cell surface.

Results: There was a strong linear correlation between the scale of the destabilization of mutant variants and the severity of retinal disease. A correlation was also seen in vitro between stability and the amount of rhodopsin at the plasma membrane. Rhodopsin is drastically reduced on the surface of cells transfected with variants that differ in their inherent stability from the wild-type by more than 2 kcal/mol. Below this threshold, surface levels are closer to those of the wild-type.

Conclusions: There is a correlation between the stability of rhodopsin mutations and disease severity and levels of membrane-bound rhodopsin. Measuring membrane-bound rhodopsin with flow cytometry could improve prognoses for poorly characterized mutations and could provide a platform for measuring the effectiveness of treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919671PMC

Publication Analysis

Top Keywords

rhodopsin stability
20
rhodopsin
16
stability severity
12
plasma membrane
12
membrane-bound rhodopsin
12
stability
11
mutant rhodopsin
8
severity retinitis
8
retinitis pigmentosa
8
amount rhodopsin
8

Similar Publications

Objective: The exact relationship between fibroblast growth factor 2 (FGF2) and choroidal neovascularization (CNV) remains unclear. In this study, using optical coherence tomography angiography (OCTA) and FGF2-tg mice which are transgenic mice with a rhodopsin promoter/FGF2 gene fusion, we aimed to investigate the dynamics of FGF2's role in angiogenesis over time.

Methods: We developed laser-induced CNV models of FGF2-tg and wild-type (WT) mice and then separated them into two groups using different laser photocoagulation (PC) conditions.

View Article and Find Full Text PDF

Molecular Mechanisms Underlying the Spectral Shift in Zebrafish Cone Opsins.

bioRxiv

September 2024

Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America.

Visual pigments are essential for converting light into electrical signals during vision. Composed of an opsin protein and a retinal-based chromophore, pigments in vertebrate rods (Rh1) and cones (Rh2) have different spectral sensitivities, with distinct peak absorption wavelengths determined by the shape and composition of the chromophore binding pocket. Despite advances in understanding Rh1 pigments such as bovine rhodopsin, the molecular basis of spectral shifts in Rh2 cone opsins has been less studied, particularly the E122Q mutation, which accounts for about half of the observed spectral shift in these pigments.

View Article and Find Full Text PDF

Retigabine increases the conformational stability of the visual photoreceptor rhodopsin.

Int J Biol Macromol

November 2024

Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Quimica, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain. Electronic address:

Rhodopsin is the key photoreceptor protein that mediates vision in low-light conditions. Mutations in rhodopsin are the cause of retinal degenerative diseases such as retinitis pigmentosa. Some of these mutations cause a decreased stability of the receptor.

View Article and Find Full Text PDF

Excited-State Dynamics of a CRABPII-Based Microbial Rhodopsin Mimic.

J Phys Chem B

August 2024

Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.

Microbial rhodopsin, a pivotal photoreceptor protein, has garnered widespread application in diverse fields such as optogenetics, biotechnology, biodevices, etc. However, current microbial rhodopsins are all transmembrane proteins, which both complicates the investigation on the photoreaction mechanism and limits their further applications. Therefore, a specific mimic for microbial rhodopsin can not only provide a better model for understanding the mechanism but also can extend the applications.

View Article and Find Full Text PDF

Unique hydrogen-bonding network in a viral channelrhodopsin.

Biochim Biophys Acta Bioenerg

November 2024

Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan. Electronic address:

Channelrhodopsins (CRs) are used as key tools in optogenetics, and novel CRs, either found from nature or engineered by mutation, have greatly contributed to the development of optogenetics. Recently CRs were discovered from viruses, and crystal structure of a viral CR, OLPVR1, reported a very similar water-containing hydrogen-bonding network near the retinal Schiff base to that of a light-driven proton-pump bacteriorhodopsin (BR). In both OLPVR1 and BR, nearly planar pentagonal cluster structures are comprised of five oxygen atoms, three oxygens from water molecules and two oxygens from the Schiff base counterions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!