Tumor characteristics are decisive in the determination of treatment strategy for patients with breast cancer. Patients with estrogen receptor α (ERα)-positive breast cancer can benefit from long-term hormonal treatment. Nonetheless, the majority of patients will develop resistance to these therapies. Here, we investigated the role of the nuclear receptor liver receptor homolog-1 (LRH-1, NR5A2) in antiestrogen-sensitive and -resistant breast cancer cells. We identified genome-wide LRH-1-binding sites using ChIP-seq (chromatin immunoprecipitation sequencing), uncovering preferential binding to regions distal to transcriptional start sites. We further characterized these LRH-1-binding sites by integrating overlapping layers of specific chromatin marks, revealing that many LRH-1-binding sites are active and could be involved in long-range enhancer-promoter looping. Combined with transcriptome analysis of LRH-1-depleted cells, these results show that LRH-1 regulates specific subsets of genes involved in cell proliferation in antiestrogen-sensitive and antiestrogen-resistant breast cancer cells. Furthermore, the LRH-1 transcriptional program is highly associated with a signature of poor outcome and high-grade breast cancer tumors in vivo. Herein, we report the genome-wide location and molecular function of LRH-1 in breast cancer cells and reveal its therapeutic potential for the treatment of breast cancers, notably for tumors resistant to treatments currently used in therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-13-2351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!