Elevated catalytic activity of ruthenium(II)-porphyrin-catalyzed carbene/nitrene transfer and insertion reactions with N-heterocyclic carbene ligands.

Angew Chem Int Ed Engl

HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053 (China); State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China).

Published: March 2014

AI Article Synopsis

  • Research focused on creating and studying bis(NHC)ruthenium(II)-porphyrin complexes, which showed remarkably high catalytic activity in various chemical reactions.
  • These complexes enabled effective transformations like alkene cyclopropanation and nitrene C-H insertion, achieving turnover frequencies as high as 1950 min(-1) and enantioselectivities of up to 98%.
  • The stability of the complexes was linked to how the axial NHC ligands helped decompose diazo compounds by stabilizing the intermediate, as confirmed by DFT calculations.

Article Abstract

Bis(NHC)ruthenium(II)-porphyrin complexes were designed, synthesized, and characterized. Owing to the strong donor strength of axial NHC ligands in stabilizing the trans M=CRR'/M=NR moiety, these complexes showed unprecedently high catalytic activity towards alkene cyclopropanation, carbene C-H, N-H, S-H, and O-H insertion, alkene aziridination, and nitrene C-H insertion with turnover frequencies up to 1950 min(-1). The use of chiral [Ru(D4-Por)(BIMe)2] (1 g) as a catalyst led to highly enantioselective carbene/nitrene transfer and insertion reactions with up to 98% ee. Carbene modification of the N terminus of peptides at 37 °C was possible. DFT calculations revealed that the trans axial NHC ligand facilitates the decomposition of diazo compounds by stabilizing the metal-carbene reaction intermediate.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201309888DOI Listing

Publication Analysis

Top Keywords

catalytic activity
8
carbene/nitrene transfer
8
transfer insertion
8
insertion reactions
8
axial nhc
8
elevated catalytic
4
activity rutheniumii-porphyrin-catalyzed
4
rutheniumii-porphyrin-catalyzed carbene/nitrene
4
insertion
4
reactions n-heterocyclic
4

Similar Publications

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.

View Article and Find Full Text PDF

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

1D Covalent Organic Frameworks with Tunable Dual-Cobalt Synergistic Sites for Efficient CO Photoreduction.

Macromol Rapid Commun

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.

Diatomic catalysts enhance photocatalytic CO reduction through synergistic effects. However, precisely regulating the distance between two catalytic centers to achieve synergistic catalysis poses significant challenges. In this study, a series of one-dimensional (1D) covalent organic frameworks (COFs) are designed with adjustable micropores to facilitate efficient CO photoreduction.

View Article and Find Full Text PDF

A Modular Engineered DNA Nanodevice for Precise Profiling of Telomerase RNA Location and Activity.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.

Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels.

View Article and Find Full Text PDF

Background: Lavandula angustifolia Mill., a valuable aromatic plant, often encounters low temperature stress during its growth in Northeast China. Understanding the mechanisms behind its resistance to low temperatures is essential for enhancing this trait.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!