Rationale: Proteolytic cleavages generate active precursor proteins by creating new N-termini in the proteins. A number of strategies have recently been published regarding the enrichment of original or newly formed N-terminal peptides using guanidination of lysine residues and amine-reactive reagents. For effective enrichment of N-terminal peptides, the efficiency of trypsin proteolysis on homoarginine (guanidinated) modified proteins must be understood and simple and versatile solid-phase N-terminal capture strategies should be developed.

Methods: We present here a mass spectrometry (MS)-based study to evaluate and optimize the trypsin proteolysis on a guanidinated-modified protein. Trypsin proteolysis was studied using different amounts of trypsin to modified protein ratios. To capture the original N-termini, after guanidination of proteins, original N-termini were acetylated and the proteins were digested with trypsin. The newly formed N-terminal tryptic peptides were captured with a new amine reactive acid-cleavable solid-phase reagent. The original N-terminal peptides were then collected from the supernatant of the solution.

Results: We demonstrated a detailed study of the efficiency of enzyme trypsin on homoarginine-modified proteins. We observed that the rate of hydrolysis of homoarginine residues compared to their lysine/arginine counterparts were slower but generally cleaved after an overnight digestion period depending on the protein to protease concentration ratios. Selectivity of the solid-phase N-terminal reagent was studied by enrichment of original N-terminal peptides from two standard proteins, ubiquitin and RNaseS.

Conclusions: We found enzyme trypsin is active in the guanidinated form of the protein depending on the enzyme to protein concentrations, time and the proximity of arginine residues in the sequence. The novel solid-phase capture reagent also successfully enriched N-terminal peptides from the standard protein mixtures. We believe this trypsin proteolysis study on homoarginine-modified proteins and our simple and versatile solid-phase capture strategy could be very useful for enrichment and sequence determination of proteins N-termini by MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969842PMC
http://dx.doi.org/10.1002/rcm.6820DOI Listing

Publication Analysis

Top Keywords

trypsin proteolysis
20
n-terminal peptides
20
solid-phase n-terminal
12
homoarginine-modified proteins
12
proteins
10
trypsin
9
mass spectrometry
8
enrichment original
8
newly formed
8
n-terminal
8

Similar Publications

Mouse-derived Synaptosomes Trypsin Cleavage Assay to Characterize Synaptic Protein Sub-localization.

Bio Protoc

January 2025

Department of Structural Interactomics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.

Neurons communicate through neurotransmission at highly specialized junctions called synapses. Each neuron forms numerous synaptic connections, consisting of presynaptic and postsynaptic terminals. Upon the arrival of an action potential, neurotransmitters are released from the presynaptic site and diffuse across the synaptic cleft to bind specialized receptors at the postsynaptic terminal.

View Article and Find Full Text PDF

Differential Activity and Expression of Proteasome in Seminiferous Epithelium During Mouse Spermatogenesis.

Int J Mol Sci

January 2025

Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile.

Proteasome-mediated protein degradation is essential for maintaining cellular homeostasis, particularly during spermatogenesis, where extensive cellular transformations, such as spermatid differentiation, require precise protein turnover. A key player in this process is the ubiquitin-proteasome system (UPS). This study aimed to investigate proteasome enzymatic activity at different stages of the spermatogenic cycle within the seminiferous tubules of mice and explore the regulatory mechanisms that influence its proteolytic function.

View Article and Find Full Text PDF

Chemical composition and techno-functional properties of high-purity water-soluble keratein and its enzymatic hydrolysates.

Food Chem

December 2024

Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Narutowicza Street 11/12, 80-233, Poland. Electronic address:

This study compared the effectiveness of urea-containing and urea-free L-cysteine solutions in extracting high-quality feather keratin and evaluated commercial proteases for producing keratin-derived bioactive peptides. The urea-assisted extraction was crucial for achieving high structural integrity and yield of soluble keratin. The keratin isolate exhibited oil-holding capacity of 9.

View Article and Find Full Text PDF

Effects of enzymolysis by seven proteases (Alcalase, Bromelain, Flavourzyme, Papain, Pepsin, Protamex, and Trypsin) with distinct cleavage specificities on the emulsification performance of hempseed protein (HPI) and its correlation with the structural and interfacial characteristics were explored in this study. Upon enzymolysis, a remarkable decrease in α-helix and β-turn was observed in resultant hydrolysates (HPH), accompanied by a rise in β-sheet and random coil, notably by Alcalase, Bromelain, Papain, and Trypsin. Overall, proteolysis led to noticeable reductions in surface hydrophobicity and total sulfhydryls as well as a redshift in intrinsic fluorescence, with Papain showing the most pronounced effects, possibly due to its higher hydrolysis degree (4.

View Article and Find Full Text PDF

The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch reactor that take into account differences in the hydrolysis of the individual peptide bonds, as well as the limited accessibility (masking) for the enzymes of some hydrolysis sites in the protein substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!