A very sensitive and reversible optical chemical sensor based on a novel tetradentate Schiff base namely N.N(/)bis(2-aminothiophenol)benzene-1,2-dicarboxaldehyde (ATBD) immobilized within a plasticized PVC film for Hg(2+) determination is described. At optimum conditions (i.e. pH 6.0), the proposed sensor displayed a linear response to Hg(2+) over 1.0 × 10(-10) - 1.0 × 10(-2) mol L(-1) with a limit of detection of 7.23 × 10(-11) mol L(-1) (0.0145 μgL(-1)). Moreover, the results revealed that, under batch condition, the sensor is fully reversible within a response time ~ 35 s. In addition to its high stability and reproducibility, the sensor showed good selectivity towards Hg(2+) ion with respect to common metal cations. The sensor was successfully applied for determination of Hg(2+) ion in some real samples, including hair, urine and well water samples. The results were in good correlation with the data obtained using cold vapor atomic absorption spectrometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-014-1364-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!