Background: Currently, task time and errors are often used as performance parameters in laparoscopic training. Training with the focus on task time improvement alone results in fast, but possibly less controlled, instrument movements and therefore suboptimal tissue handling skills.
Methods: Twenty-five medical students were randomly assigned in two groups. Both groups performed a tissue manipulation task six times. During this training session, the time feedback group (n = 13) received real-time visual feedback of the task time. The force feedback group (n = 12) received real-time visual feedback of the tissue manipulation force. After the training sessions, participants in both groups performed an entirely different task without visual feedback. Task time, force, and motion parameters of this posttest were used to compare the technical skills of the medical students.
Results: The training data of the group that received force feedback showed a learning curve for the mean and max absolute force, max force area, force volume, task time, and path length of both instruments. The data from the group that received time feedback showed a learning curve for the max force, task time, and path length of both instruments. In the posttest, the parameters of mean absolute force (p = 0.039), max force (p = 0.041), and force volume (p = 0.009) showed a significant difference in favor of the group that received force feedback.
Conclusions: The learning curves and the posttest indicate that training with visual force feedback improves tissue handling skills with no negative effect on the task time and instrument motions. Conventional laparoscopic training with visual time feedback improves instrument motion and task time, but it does not improve tissue manipulation skills.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00464-014-3425-x | DOI Listing |
Introduction: Load carriage is an inherent part of tactical operations. Critical speed (CS) has been associated with technical and combat-specific performance measures (e.g.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
A serious limitation to the deployment of IoT solutions in rural areas may be the lack of available telecommunications infrastructure enabling the continuous collection of measurement data. A nomadic computing system, using a UAV carrying an on-board gateway, can handle this; it leads, however, to a number of technical challenges. One is the intermittent collection of data from ground sensors governed by weather conditions for the UAV measurement missions.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Physical Culture Sciences, University of Szczecin, al. Piastów 40B, Blok 6, 71-065 Szczecin, Poland.
The assessment of the various skills of athletes is carried out in terms of their ability to perform sport-specific tasks. The cognitive abilities of the players have significance for their effectiveness. In volleyball, a player's ability to react quickly appears to be crucial in responding to an opponent's dynamic play.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Engineering, University of Napoli Parthenope, Centro Direzionale, 80143 Napoli, Italy.
In the context of neurodegenerative diseases, finger tapping is a gold-standard test used by clinicians to evaluate the severity of the condition. The finger tapping test involves repetitive tapping between the index finger and thumb. Subjects affected by neurodegenerative diseases, such as Parkinson's disease, often exhibit symptoms like bradykinesia, rigidity, and tremor.
View Article and Find Full Text PDFSensors (Basel)
December 2024
AVIC Aeronautics Computing Technology Research Institute, Xi'an 710069, China.
The rapid deployment and enhanced communication capabilities of unmanned aerial vehicles (UAVs) have enabled numerous real-time sensing applications. These scenarios often necessitate task offloading and execution under stringent transmission delay constraints, particularly for time-critical applications such as disaster rescue and environmental monitoring. This paper investigates the improvement of MEC-based task offloading services in energy-constrained UAV networks using backscatter communication (BackCom) with non-orthogonal multiple access (BAC-NOMA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!