Allosteric modifiers have the potential to fine-tune enzyme activity. Therefore, targeting allosteric sites is gaining increasing recognition as a strategy in drug design. Here we report the use of computational methods for the discovery of the first small-molecule allosteric inhibitor of the collagenolytic cysteine peptidase cathepsin K, a major target for the treatment of osteoporosis. The molecule NSC13345 is identified by high-throughput docking of compound libraries to surface sites on the peptidase that are connected to the active site by an evolutionarily conserved network of residues (protein sector). The crystal structure of the complex shows that NSC13345 binds to a novel allosteric site on cathepsin K. The compound acts as a hyperbolic mixed modifier in the presence of a synthetic substrate, it completely inhibits collagen degradation and has good selectivity for cathepsin K over related enzymes. Altogether, these properties qualify our methodology and NSC13345 as promising candidates for allosteric drug design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms4287 | DOI Listing |
Head and neck squamous cell carcinoma (HNSCC) develops and advances because of the accumulation of somatic mutations located in orthosteric and allosteric areas. However, the biological effects of allosteric driver mutations during tumorigenesis are mostly unknown. Here, we mapped somatic mutations generated from 10 tumor-normal matched HNSCC samples into allosteric sites to prioritize the mutated allosteric proteins via whole-exome sequencing and AlloDriver, identifying the specific mutation H351Q in β-glucuronidase (GUSB), a lysosomal enzyme, as a novel allosteric driver mutation, which considerably encouraged HNSCC progression both in vitro and in vivo.
View Article and Find Full Text PDFTrends Pharmacol Sci
January 2025
Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA; Center for Clinical Pharmacology, Washington University School of Medicine, St Louis, MO, USA. Electronic address:
Activation of the μ opioid receptor (MOR) can give analgesia, but also has dangerous side effects. Drugs that target MOR through an allosteric site, meaning they bind outside of the usual pocket, present a novel mode of receptor activation with different pharmacology relative to orthosteric drugs. Recent structural studies give valuable new information on how allosteric modulators interact with MOR.
View Article and Find Full Text PDFFEMS Yeast Res
January 2025
Department of Life Sciences, Chalmers University of Technology, 412 58 Gothenburg, Sweden.
Yeast-based sensors have shown great applicability for deorphanization of G protein-coupled receptors (GPCRs) and screening of ligands targeting these. A GPCR of great interest is free fatty acid 2 receptor (FFA2R), for which short-chain fatty acids such as propionate and acetate are agonists. FFA2R regulates a wide array of downstream receptor signaling pathways in both adipose tissue and immune cells and has been recognized as a promising therapeutic target, having been implicated in several metabolic and inflammatory diseases.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark.
GABA receptors (GABARs) are the major elements of inhibitory neurotransmission in the central nervous system (CNS). They are established targets for regulation by endogenous brain neuroactive steroids (NASs) such as pregnanolone. However, the complexity of de novo synthesis of NAS derivatives has hindered attempts to circumvent the principal limitations of using endogenous NASs, including selectivity and limited oral bioavailability.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Inducing the degradation of KRAS represents a novel strategy to combat cancers with KRAS mutation. In this study, we identify ubiquitin-specific protease 2 (USP2) as a novel deubiquitinating enzyme of KRAS in multiple myeloma (MM). Specifically, we demonstrate that gambogic acid (GA) forms a covalent bond with the cysteine 284 residue of USP2 through an allosteric pocket, inhibiting its deubiquitinating activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!