One of the most relevant questions regarding the function of the nervous system is how sensory information is represented in populations of cortical neurons. Despite its importance, the manner in which sensory-evoked activity propagates across neocortical layers and columns has yet not been fully characterized. In this study, we took advantage of the distinct organization of the rodent barrel cortex and recorded with multielectrode arrays simultaneously from up to 74 neurons localized in several functionally identified layers and columns of anesthetized adult Wistar rats in vivo. The flow of activity within neuronal populations was characterized by temporally precise spike sequences, which were repeatedly evoked by single-whisker stimulation. The majority of the spike sequences representing instantaneous responses were led by a subgroup of putative inhibitory neurons in the principal column at thalamo-recipient layers, thus revealing the presence of feedforward inhibition. However, later spike sequences were mainly led by infragranular excitatory neurons in neighboring columns. Although the starting point of the sequences was anatomically confined, their ending point was rather scattered, suggesting that the population responses are structurally dispersed. Our data show for the first time the simultaneous intra- and intercolumnar processing of information at high temporal resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhu007DOI Listing

Publication Analysis

Top Keywords

spike sequences
16
barrel cortex
8
layers columns
8
sequences
5
laminar columnar
4
columnar structure
4
structure sensory-evoked
4
sensory-evoked multineuronal
4
spike
4
multineuronal spike
4

Similar Publications

The ongoing global pandemic caused by the SARS-CoV-2 virus has demanded the urgent search for effective therapeutic interventions. In response, our research aimed at identifying natural products (NPs) with potential inhibitory effects on the entry of the SARS-CoV-2 spike (S) protein into host cells. Utilizing the Protein Data Bank Japan (PDBJ) and BindingDB databases, we isolated 204 S-glycoprotein sequences and conducted a clustering analysis to identify similarities and differences among them.

View Article and Find Full Text PDF

The hippocampal CA3 subregion is a densely connected recurrent circuit that supports memory by generating and storing sequential neuronal activity patterns that reflect recent experience. While theta phase precession is thought to be critical for generating sequential activity during memory encoding, the circuit mechanisms that support this computation across hippocampal subregions are unknown. By analyzing CA3 network activity in the absence of each of its theta-modulated external excitatory inputs, we show necessary and unique contributions of the dentate gyrus (DG) and the medial entorhinal cortex (MEC) to phase precession.

View Article and Find Full Text PDF

[Genomic Characterization of SARS-CoV-2 Isolates Obtained from Antalya, Türkiye].

Mikrobiyol Bul

October 2024

The University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, Netherlands.

As the number of coronavirus diseases-2019 (COVID-19) cases have decreased and measures have started to be implemented at an individual level rather than in the form of social restrictions, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) still maintains its importance and has already taken its place in the spectrum of agents investigated in multiplex molecular test panels for respiratory tract infections in routine diagnostic use. In this study, we aimed to present mutation analysis and clade distribution of whole genome sequences from randomly selected samples that tested positive with SARS-CoV-2 specific real-time reverse transcription polymerase chain reaction (rRT-PCR) test at different periods of the pandemic in our laboratory with a commercial easy-to-use kit designed for next-generation sequencing systems. A total of 84 nasopharyngeal/oropharyngeal swab samples of COVID-19 suspected patients which were sent for routine diagnosis to the medical microbiology laboratory and detected as SARSCoV-2 RNA positive with rRT-PCR were randomly selected from different periods for sequence analysis.

View Article and Find Full Text PDF

Trivalent recombinant protein vaccine induces cross-neutralization against XBB lineage and JN.1 subvariants: preclinical and phase 1 clinical trials.

Nat Commun

December 2024

Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.

The immune escape capacities of XBB variants necessitate the authorization of vaccines with these antigens. In this study, we produce three recombinant trimeric proteins from the RBD sequences of Delta, BA.5, and XBB.

View Article and Find Full Text PDF

Highly mutable pathogens generate viral diversity that impacts virulence, transmissibility, treatment, and thwarts acquired immunity. We previously described C19-SPAR-Seq, a high-throughput, next-generation sequencing platform to detect SARS-CoV-2 that we here deployed to systematically profile variant dynamics of SARS-CoV-2 for over 3 years in a large, North American urban environment (Toronto, Canada). Sequencing of the ACE2 receptor binding motif and polybasic furin cleavage site of the Spike gene in over 70,000 patients revealed that population sweeps of canonical variants of concern (VOCs) occurred in repeating wavelets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!