Primary ciliary dyskinesia (PCD) is an inherited chronic respiratory obstructive disease with randomized body laterality and infertility, resulting from cilia and sperm dysmotility. PCD is characterized by clinical variability and extensive genetic heterogeneity, associated with different cilia ultrastructural defects and mutations identified in >20 genes. Next generation sequencing (NGS) technologies therefore present a promising approach for genetic diagnosis which is not yet in routine use. We developed a targeted panel-based NGS pipeline to identify mutations by sequencing of selected candidate genes in 70 genetically undefined PCD patients. This detected loss-of-function RSPH1 mutations in four individuals with isolated central pair (CP) agenesis and normal body laterality, from two unrelated families. Ultrastructural analysis in RSPH1-mutated cilia revealed transposition of peripheral outer microtubules into the 'empty' CP space, accompanied by a distinctive intermittent loss of the central pair microtubules. We find that mutations in RSPH1, RSPH4A and RSPH9, which all encode homologs of components of the 'head' structure of ciliary radial spoke complexes identified in Chlamydomonas, cause clinical phenotypes that appear to be indistinguishable except at the gene level. By high-resolution immunofluorescence we identified a loss of RSPH4A and RSPH9 along with RSPH1 from RSPH1-mutated cilia, suggesting RSPH1 mutations may result in loss of the entire spoke head structure. CP loss is seen in up to 28% of PCD cases, in whom laterality determination specified by CP-less embryonic node cilia remains undisturbed. We propose this defect could arise from instability or agenesis of the ciliary central microtubules due to loss of their normal radial spoke head tethering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049301 | PMC |
http://dx.doi.org/10.1093/hmg/ddu046 | DOI Listing |
J Cheminform
January 2025
Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Friedrich-Hirzebruch-Allee 5/6, 53115, Bonn, Germany.
Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure-activity relationship (SAR) information. Pairs of active AS consisting of compounds with corresponding substituents and comparable potency progression represent SAR transfer events for the same target or across different targets. We report a new computational approach to systematically search for SAR transfer series that combines an AS alignment algorithm with context-depending similarity assessment based on vector embeddings adapted from natural language processing.
View Article and Find Full Text PDFSci Rep
January 2025
School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
Based on the symmetric initiation mechanism of double-wing cracks in coal rock mass induced by high-pressure electro-recoil water pressure, fracturing experiments have been performed on coal rock mass under different water pressures and discharge conditions using high-voltage electric pulse hydraulic fracturing devices. Combined with CT scans, the crack spatial distribution inside the post-break coal rock mass was analyzed and found that the edge of the water injection hole is prone to produce double-wing cracks along the drilling hole diameter. ABAQUS is used to verify the physical test and extend the test conditions, the geometric parameter change, morphological expansion rule and crack initiation mechanism of double-wing crack in coal rock mass under different discharge conditions and ground stress conditions are studied.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Bioscience, Research and Early Development, Oncology, AstraZeneca, Cambridge, Cambridgeshire, UK.
A protocol for the preparation of tissue extracts for the targeted analysis ca. 150 polar metabolites, including those involved in central carbon metabolism, is described, using a reversed phase ion pair U(H)PLC-MS method. Data collection enabled in high-resolution mass spectrometry detection provides highly specific and sensitive acquisition of metabolic intermediates with wide range physicochemical properties and pathway coverage.
View Article and Find Full Text PDFMicron
January 2025
Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. Electronic address:
Determining the handedness of helical nanocoils using transmission electron microscopy (TEM) has traditionally been challenging due to the deep depth of field and transmission nature of TEM, complementary techniques are considered necessary and have been practiced such as low angle rotary shadowing, scanning electron microscopy (SEM), or atomic force microscopy (AFM). These methods require customized sample preparation, making direct comparison difficult. Inspired by the need to identify the helical winding direction from TEM images alone, we developed a specialized tomography grid to capture stereo-pair images, enabling stereopsis.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Department of Physics, University of Exeter, Stocker Rd., Exeter EX4 4QL, UK.
Magnetoreception, the ability to sense magnetic fields, is widespread in animals but remains poorly understood. The leading model links this ability in migratory birds to the photo-activation of the protein cryptochrome. Magnetic information is thought to induce structural changes in cryptochrome via a transient radical pair intermediate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!