Previous studies reported that progesterone could improve cognitive outcome following TBI. Moreover, some evidence implied that the hippocampus is associated with cognitive function. The aim of this study was to investigate the neuroprotective effects of progesterone on hippocampal neurons in vitro and in vivo, and its influence on the cognitive outcome. In vitro, the model of primary cultured hippocampal neurons against glutamate-induced excitotoxic damage was used. After 10-day culture, neurons were pretreated with progesterone in a concentration 10 ng/ml, 48 h before a 5-min exposure to 200 μmol/l glutamate. Then 24h after glutamate exposure, the nerve cells were observed and LDH was detected. The results showed progesterone protected the cultured hippocampal neurons morphology and significantly reduced the amount of LDH. In vivo, the model of TBI was established by modified Feeney's weight-dropping method. The progesterone was given in a dose of 16 mg/kg by intraperitoneal injection 1h post injury and subsequent injections subcutaneously at 6h and 12h after TBI. Brain samples were extracted at 24h after injury. Histology and the iNOS expression were examined by Nissl stain, immunohistochemistry and Western blot. The cognitive outcome was assessed by Morris water maze test (MWM). The results revealed that the neuronal cell damage and the expression of iNOS in the hippocampus CA1 were significantly decreased after progesterone administration. Progesterone significantly improved cognitive outcome after TBI. The results suggest that the positive effects of progesterone on cognitive outcome may be linked to protecting hippocampal neurons from secondary damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2014.01.049DOI Listing

Publication Analysis

Top Keywords

cognitive outcome
24
hippocampal neurons
20
progesterone
9
improved cognitive
8
progesterone administration
8
protecting hippocampal
8
neurons secondary
8
secondary damage
8
vitro vivo
8
outcome tbi
8

Similar Publications

Given the growing concern over the impact of brain health in individuals with overweight, understanding how mental exertion (ME) during exercise affects substrate oxidation and cardiorespiratory outcomes is crucial. This study examines how ME impacts these outcomes during an incremental exercise test in adults with overweight. Seventeen adults who were overweight completed an incremental exercise test on a cycle ergometer two times, with and without the Stroop task.

View Article and Find Full Text PDF

Background: Since older adults spend significant time in their neighborhood environment, environmental factors such as neighborhood socioeconomic disadvantage, high racial segregation, low healthy food availability, low access to recreation, and minimal social engagement may have adverse effects on cognitive function and increase susceptibility to dementia. DNA methylation, which is associated with neighborhood characteristics as well as cognitive function and white matter hyperintensity (WMH), may act as a mediator between neighborhood characteristics and neurocognitive outcomes.

Methods: In this study, we examined whether DNA methylation in peripheral blood leukocytes mediates the relationship between neighborhood characteristics and cognitive function (N = 542) or WMH (N = 466) in older African American (AA) participants without preliminary evidence of dementia from the Genetic Epidemiology Network of Arteriopathy (GENOA).

View Article and Find Full Text PDF

Liver function and Alzheimer's brain pathologies: A longitudinal study: Liver and Alzheimer's pathologies.

J Prev Alzheimers Dis

January 2025

Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, 03080, Republic of Korea; Interdisciplinary Program of Cognitive Science, Seoul National University College of Humanities, Seoul, 08826, Republic of Korea. Electronic address:

Importance: The neuropathological links underlying the association between changes in liver function and AD have not yet been clearly elucidated.

Objective: We aimed to examine the relationship between liver function markers and longitudinal changes in Alzheimer's disease (AD) core pathologies.

Design: Data from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease, a longitudinal cohort study initiated in 2014, were utilized.

View Article and Find Full Text PDF

Maintaining level of modifiable dementia risk scores is associated with better cognitive outcomes than increasing risk scores: A population-based prospective cohort study.

J Prev Alzheimers Dis

January 2025

School of Psychology, University of New South Wales, Sydney, NSW 2057, Australia; Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker St, Randwick NSW 2031, Australia. Electronic address:

Background: A brain healthy lifestyle, consisting of good cardiometabolic health and being cognitively and socially active in midlife, is associated with a lower risk of cognitive decline years later. However, it is unclear whether lifestyle changes over time also affect the risk for mild cognitive impairment (MCI)/dementia, and rate of cognitive decline.

Objectives: To investigate if lifestyle changes over time are associated with incident MCI/dementia risk and rate of cognitive decline.

View Article and Find Full Text PDF

Introduction: Informal care estimates for use in health-economic models are lacking. We aimed to estimate the association between informal care time and dementia symptoms across Europe.

Methods: A secondary analysis was performed on 13,529 observations in 5,369 persons from 9 European pooled cohort or trial studies in community-dwelling persons with dementia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!