Atopic dermatitis (AD) is a chronic inflammatory skin disease in which the skin barrier function is disrupted. In this inflammatory AD environment, cytokines are upregulated, but the cytokine effect on the AD skin barrier is not fully understood. We aimed to investigate the influence of Th2 (IL-4, IL-13, IL-31) and pro-inflammatory (tumor necrosis factor alpha (TNF-α)) cytokines on epidermal morphogenesis, proliferation, differentiation, and stratum corneum lipid properties. For this purpose, we used the Leiden epidermal model (LEM) in which the medium was supplemented with these cytokines. Our results show that IL-4, IL-13, IL-31, and TNF-α induce spongiosis, augment TSLP secretion by keratinocytes, and alter early and terminal differentiation-protein expression in LEMs. TNF-α alone or in combination with Th2 cytokines decreases the level of long chain free fatty acids (FFAs) and ester linked ω-hydroxy (EO) ceramides, consequently affecting the lipid organization. IL-31 increases long chain FFAs in LEMs but decreases relative abundance of EO ceramides. These findings clearly show that supplementation with TNF-α and Th2 cytokines influence epidermal morphogenesis and barrier function. As a result, these LEMs show similar characteristics as found in AD skin and can be used as an excellent tool for screening formulations and drugs for the treatment of AD.

Download full-text PDF

Source
http://dx.doi.org/10.1038/jid.2014.83DOI Listing

Publication Analysis

Top Keywords

th2 cytokines
12
tnf-α th2
8
stratum corneum
8
skin barrier
8
barrier function
8
il-4 il-13
8
il-13 il-31
8
epidermal morphogenesis
8
long chain
8
cytokines
6

Similar Publications

Association of systemic inflammation and long-term dysfunction in COVID-19 patients: A prospective cohort.

Psychoneuroendocrinology

December 2024

Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC,  Brazil; Hospital São José Research Center, Criciúma, SC, Brazil.

COVID-19 has significant long-term impacts, including a chronic syndrome known as long-COVID, characterized by persistent symptoms post-recovery. The inflammatory response during acute infection is hypothesized to influence long-term outcomes. This study aimed to identify inflammatory biomarkers predictive of functional outcomes one year after hospital discharge.

View Article and Find Full Text PDF

Introduction: Atopic dermatitis (AD) is a chronic inflammatory disease characterized by increased skin sensitivity to environmental elements, mediated by CD4 T helper cells (Th2). Interleukin-33 (IL-33) plays a critical role in exacerbating symptoms in inflamed tissues. Conversely, vitamin D has been shown to induce antimicrobial peptides and suppress the inflammatory response.

View Article and Find Full Text PDF

In vitro and in vivo evaluation of Ulva lactuca for wound healing.

PLoS One

January 2025

College of Nursing, Divisions of Basic Medicine, Tzu Chi University, Hualien, Taiwan.

Ulva lactuca (U. lactuca) is an important seaweed species. Some ingredients in this species are thought to accelerate wound healing.

View Article and Find Full Text PDF

Allergic airway inflammation is a universal airway disease induced by inhaling allergens. Published data show that RNF128, an E3 ligase, promotes Th2 activation in the OVA-induced asthma model. Recent advances have shown that group 2 innate lymphoid cells (ILC2s) produce the cytokines IL-5 and IL-13 to mediate type 2 immune response.

View Article and Find Full Text PDF

Understanding how inflammatory cytokines influence profibrogenic wound healing responses in fibroblasts is important for understanding the pathogenesis of fibrosis. TNF-α and IL-13 are key cytokines in Th1 and Th2 immune responses, respectively, while TGF-β1 is the principal pro-fibrotic mediator. We show that 12-day fibroblast culture with TNF-α or IL-13 induces fibrogenesis, marked by progressively increasing type III and VI collagen formation, and that TGF-β1 co-stimulation amplifies these effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!