2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC), one of the flavonoids isolated and purified from the dried flower buds of Cleistocalyx operculatus, was explored for its function in glucose uptake/glycogen synthesis in insulin-sensitive tissue cells and its effect and mechanism on 3T3-L1 preadipocyte differentiation. DMC (10 μM) treatment remarkably promoted glucose uptake in differentiated 3T3-L1 adipocytes (P < 0.05 vs control group), whereas the glucose uptake in L6 myoblasts and glycogen synthesis in HepG2 hepatocytes were not affected by the treatment. DMC had paradoxical effects on lipid accumulation in 3T3-L1 cells compared with differentiation control. High concentrations of DMC (10 and 20 μM) markedly diminished lipid accumulation; however, a low concentration of DMC (2.5 μM) enhanced lipid storage in 3T3-L1 cells (P < 0.01 vs differentiation control group), and 5 μM DMC did not impose a significant effect. It was demonstrated that the effect of DMC in lipid accumulation was controlled by the expression of PPAR-γ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf405368q | DOI Listing |
Cureus
December 2024
Diagnostic Radiology and Nuclear Medicine, Institute of Science Tokyo, Tokyo, JPN.
Desmoid fibromatosis (DF) is a rare, non-metastasizing but locally aggressive mesenchymal tumor arising from fibroblasts or myofibroblasts. We report a solitary case of DF involving the retropharyngeal and danger spaces, a location rarely documented. The patient, a woman in her 70s, presented with progressive pharyngeal discomfort over six months.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
Objective: Obesity and insulin resistance in men are linked to decreased testosterone and increased estradiol (E2) levels. Aromatase (ARO) converts testosterone into E2, and this occurs mainly in adipose tissue in men. E2 acts through estrogen receptors ESR1 and ESR2, and they potentially affect development of type 2 diabetes (T2D).
View Article and Find Full Text PDFBioresour Technol
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide (HMO) and has been approved to be commercially added to infant formula. Microbial synthesis from exogenous lactose via metabolic engineering is currently the major approach to production of 2'-FL. Replacement of lactose with cheaper sugars such as glucose and sucrose has been studied to reduce the production costs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China. Electronic address:
Extracellular matrix (ECM) and integrins are important biological macromolecules. ECM especially collagen IV (COLIV) deposition modulates the integrin-FAK signaling pathway involved in adipogenesis and is strongly associated with insulin resistance. Type 2 diabetes mellitus (T2DM) mice were given swertiamarin (STM) by intragastric administration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!