Electrode contamination effects of retarding potential analyzer.

Rev Sci Instrum

Plasma and Space Science Center, National Cheng Kung University, No.1 University Rd., Tainan 70101, Taiwan.

Published: January 2014

The electrode contamination in electrostatic analyzers such as Langmuir probes and retarding potential analyzers (RPA) is a serious problem for space measurements. The contamination layer acts as extra capacitance and resistance and leads to distortion in the measured I-V curve, which leads to erroneous measurement results. There are two main effects of the contamination layer: one is the impedance effect and the other is the charge attachment and accumulation due to the capacitance. The impedance effect can be reduced or eliminated by choosing the proper sweeping frequency. However, for RPA the charge accumulation effect becomes serious because the capacitance of the contamination layer is much larger than that of the Langmuir probe of similar dimension. The charge accumulation on the retarding potential grid causes the effective potential, that ions experience, to be changed from the applied voltage. Then, the number of ions that can pass through the retarding potential grid to reach the collector and, thus, the measured ion current are changed. This effect causes the measured ion drift velocity and ion temperature to be changed from the actual values. The error caused by the RPA electrode contamination is expected to be significant for sounding rocket measurements with low rocket velocity (1-2 km/s) and low ion temperature of 200-300 K in the height range of 100-300 km. In this paper we discuss the effects associated with the RPA contaminated electrodes based on theoretical analysis and experiments performed in a space plasma operation chamber. Finally, the development of a contamination-free RPA for sounding rocket missions is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4856515DOI Listing

Publication Analysis

Top Keywords

retarding potential
16
electrode contamination
12
contamination layer
12
charge accumulation
8
potential grid
8
measured ion
8
ion temperature
8
sounding rocket
8
potential
5
contamination
5

Similar Publications

Profile and development of adaptive behavior in adults with autism spectrum disorder and severe intellectual disability.

Front Psychiatry

January 2025

Laboratoire Lorrain de Psychologie et Neurosciences de la Dynamique des Comportements, Université de Lorraine, Nancy, Lorraine, France.

Background: This study examined the profiles of adaptive behavior development in adults with autism spectrum disorder (ASD) and severe intellectual disability (ID), and the relationships between the levels of the different domains and subdomains of adaptive development and the intensity of autistic symptomatology.

Participants: This study involved 71 adults (44 men and 27 women with average ages of 39 years 7 months and 36 years 2 months, respectively) living in medico-social institutions and having a level of adaptive development corresponding to age below 3 years 4 months and a level of cognitive development corresponding to ages between 12 and 24 months.

Methods: ASD was diagnosed using Pervasive Development Disorder-Mental Retardation Scale (PDD-MRS) and Childhood Autistic Rating Scale (CARS), ID and its severity were determined based on the Diagnostic Statistical Manual-5 (DSM-5) criteria, and the very low cognitive developmental level was assessed using the Socio-emotional Cognitive Evaluation Battery (Adrien, Pearson-ECPA, 2007), adapted for adults (SCEB-A).

View Article and Find Full Text PDF

Background: Placental syndrome, mainly composed of preeclampsia and fetal growth restriction, has an impact on the health of mother and baby dyads. While impaired placentation is central to their pathophysiology, the underlying molecular mechanisms remain incompletely understood. This study investigates the association between placental syndrome and metabolic alterations in 1-deoxysphingolipids (1-deoxySLs) and polyamines, along with their regulatory enzymes.

View Article and Find Full Text PDF

Highly bright perovskite light-emitting diodes enabled by retarded Auger recombination.

Nat Commun

January 2025

Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.

One of the key advantages of perovskite light-emitting diodes (PeLEDs) is their potential to achieve high performance at much higher current densities compared to conventional solution-processed emitters. However, state-of-the-art PeLEDs have not yet reached this potential, often suffering from severe current-efficiency roll-off under intensive electrical excitations. Here, we demonstrate bright PeLEDs, with a peak radiance of 2409 W sr m and negligible current-efficiency roll-off, maintaining high external quantum efficiency over 20% even at current densities as high as 2270 mA cm.

View Article and Find Full Text PDF

Chitosan (CS) based sponge shows important potential applications in adsorption, filtration, sensing, etc., which often requires good deformation-recovery ability that is usually achieved under the help of silane elastomers. Herein, a simple but innovative strategy was proposed that only bamboo activated carbon (BAC) was employed as the reinforcer to construct highly elastic phosphorylated chitosan (P-CS) sponge with through-hole structure like layer-support by freeze drying.

View Article and Find Full Text PDF

Prenatal ultrasound phenotype of fetuses with recurrent 1q21.1 deletion and duplication syndrome.

Front Pediatr

January 2025

Henan Provincial Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.

Objective: Our study aimed to collect fetuses with recurrent 1q21.1 deletion or duplication syndrome for systematic clinical phenotype analysis to further delineate the intrauterine phenotype features of the two reciprocal syndromes.

Methods: Prenatal samples, including amniotic fluid and chorionic villus samples, were obtained by amniocentesis and chorionic villus sampling at our center, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!