Temperature controlled tensile testing of individual nanowires.

Rev Sci Instrum

Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Published: January 2014

We present a novel experimental method for quantitatively characterizing the temperature-dependent mechanical behavior of individual nanostructures during uniaxial straining. By combining a microelectromechanical tensile testing device with a low thermal mass and digital image correlation providing nm-level displacement resolution, we show successful incorporation of a testing platform in a vacuum cryostat system with an integrated heater and temperature control. Characterization of the local sample temperature and time-dependent response at both low and high temperature demonstrates a testing range of ∼90-475 K and steady-state drift rates less than 0.04 K/min. In situ operation of the tensile testing device employing resistively heated thermal actuators while imaging with an optical microscope enables high-resolution displacement measurements, from which stress-strain behavior of the nanoscale specimens is deduced. We demonstrate the efficacy of our approach in measuring the temperature dependence of tensile strength in nominally defect-free ⟨110⟩ Pd nanowhiskers. We uncover a pronounced sensitivity of the plastic response to testing temperature over a range of ∼300 K, with an ultimate strength in excess of 6 GPa at low temperature. The results are discussed in the context of thermally activated deformation mechanisms and defect nucleation in defect-free metallic nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4858815DOI Listing

Publication Analysis

Top Keywords

tensile testing
12
testing device
8
temperature
7
testing
6
temperature controlled
4
tensile
4
controlled tensile
4
testing individual
4
individual nanowires
4
nanowires novel
4

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Glassphalt suffers from performance defects, especially against moisture damage and fatigue cracking. In this research, the performance of glassphalt modified with CF has been evaluated against moisture damage, fatigue cracking and rutting. Based on this, Modified Lottman, Wilhelmy Plate (WP), Indirect Tensile Stiffness Modulus (ITSM), Indirect Tensile Fatigue (ITF), and Repeated Load Axial (RLA) tests have been performed on glassphalt modified with CF.

View Article and Find Full Text PDF

Effect of Application Mode and Aging on Microtensile Bond Strength of Universal Adhesives to Enamel of Primary Teeth.

Int J Paediatr Dent

January 2025

Department of Paediatric Dentistry, Medical Centre for Dentistry, University Medical Centre Giessen and Marburg GmbH (Campus Giessen), Justus-Liebig-University, Giessen, Germany.

Background: Limited reports are available regarding bonding of universal adhesives to primary teeth' enamel.

Aim: To evaluate the effect of application mode and aging on microtensile bond strength (μTBS) of universal adhesives to primary enamel.

Design: Ninety-six human primary molars were randomly assigned to three groups: SU: Scotchbond Universal (3M); CU: Clearfil Universal Bond Quick (Kuraray Noritake); iBU: iBond Universal (Heraeus Kulzer), then subdivided according to phosphoric acid etching time into three subgroups (SG): SG1: 0s; SG2: 15s; SG3: 30s.

View Article and Find Full Text PDF

Time-dependent effects of ethanol-glycerin embalming on iliotibial band biomechanics.

J Mech Behav Biomed Mater

January 2025

Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany; Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany; Department of Anatomy, University of Otago, Dunedin, New Zealand.

When conducting biomechanical testing or clinical training using embalmed human soft tissues, it is essential to understand their impact on biomechanical properties and their time dependence. Previous studies have investigated this influence, but specific variations over different embalming durations have not been thoroughly addressed to date. Ninety-seven human iliotibial band specimens were obtained from nine donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!