We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4858835DOI Listing

Publication Analysis

Top Keywords

scanning probe
12
low temperature
12
ultra-high vacuum
8
diamond-based scanning
4
probe spin
4
spin sensor
4
sensor operating
4
operating low
4
temperature
4
temperature ultra-high
4

Similar Publications

The solvation of ions at interfaces is important to areas as diverse as atmospheric sciences, energy materials, and biology. Despite the significance, fundamental understanding, particularly at the molecular level, remains incomplete. Here, we probe the initial solvation of two singly charged but differently sized ions (Li and Cs) on a Au(111) by combining low-temperature scanning tunneling microscopy with density functional theory.

View Article and Find Full Text PDF

 The absence of precise landmarks in the middle fossa floor and frequent anatomical variations make it difficult to localize the internal acoustic canal (IAC) during the middle fossa approach (MFA). We aimed to investigate the reliability and utility of the neuronavigation system (NNS) in the MFA and to delineate specific technical considerations regarding NNS during the approach.  One-millimeter-thin section computed tomography scans were performed on five formalin-fixed human cadavers (10 sides).

View Article and Find Full Text PDF

The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM).

View Article and Find Full Text PDF

Identification of Gingival Inflammation Surface Image Features Using Intraoral Scanning and Deep Learning.

Int Dent J

January 2025

Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China. Electronic address:

Introduction And Aim: The assessment of gingival inflammation surface features mainly depends on subjective judgment and lacks quantifiable and reproducible indicators. Therefore, it is a need to acquire objective identification information for accurate monitoring and diagnosis of gingival inflammation. This study aims to develop an automated method combining intraoral scanning (IOS) and deep learning algorithms to identify the surface features of gingival inflammation and evaluate its accuracy and correlation with clinical indicators.

View Article and Find Full Text PDF

The emergence of spinon quasiparticles, which carry spin but lack charge, is a hallmark of collective quantum phenomena in low-dimensional quantum spin systems. While the existence of spinons has been demonstrated through scattering spectroscopy in ensemble samples, real-space imaging of these quasiparticles within individual spin chains has remained elusive. In this study, we construct individual Heisenberg antiferromagnetic spin-1/2 chains using open-shell [2]triangulene molecules as building blocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!