Perylene-derived triplet acceptors with optimized excited state energy levels for triplet-triplet annihilation assisted upconversion.

J Org Chem

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling-Gong Road, Dalian 116024, P. R. China.

Published: March 2014

A series of perylene derivatives are prepared as triplet energy acceptors for triplet-triplet annihilation (TTA) assisted upconversion. The aim is to optimize the energy levels of the T1 and S1 states of the triplet acceptors, so that the prerequisite for TTA (2E(T1) > E(S1)) can be better satisfied, and eventually to increase the upconversion efficiency. Tuning of the energy levels of the excited states of the triplet acceptors is realized either by attaching aryl groups to perylene (via single or triple carbon-carbon bonds), or by assembling a perylene-BODIPY dyad, in which the components present complementary S1 and T1 state energy levels. The S1 state energy levels of the perylene derivatives are generally decreased compared to perylene. The anti-Stokes shift, TTA, and upconversion efficiencies of the new triplet acceptors are improved with respect to the perylene hallmark. For the perylene-BODIPY dyads, the fluorescence emission was substantially quenched in polar solvents. Moreover, we found that extension of the π-conjugation of BODIPY energy donor significantly reduces the energy level of the S1 state. Low S1 state energy level and high T1 state energy level are beneficial for triplet photosensitizers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo402718eDOI Listing

Publication Analysis

Top Keywords

state energy
20
energy levels
20
triplet acceptors
16
energy level
12
energy
10
triplet-triplet annihilation
8
assisted upconversion
8
perylene derivatives
8
states triplet
8
state
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!