In the dairy industry, crystallization is an important separation process used in the refining of lactose from whey solutions. In the refining operation, lactose crystals are separated from the whey solution through nucleation, growth, and/or aggregation. The rate of crystallization is determined by the combined effect of crystallizer design, processing parameters, and impurities on the kinetics of the process. This review summarizes studies on lactose crystallization, including the mechanism, theory of crystallization, and the impact of various factors affecting the crystallization kinetics. In addition, an overview of the industrial crystallization operation highlights the problems faced by the lactose manufacturer. The approaches that are beneficial to the lactose manufacturer for process optimization or improvement are summarized in this review. Over the years, much knowledge has been acquired through extensive research. However, the industrial crystallization process is still far from optimized. Therefore, future effort should focus on transferring the new knowledge and technology to the dairy industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.12349 | DOI Listing |
Angew Chem Int Ed Engl
March 2025
Northwestern Polytechnical University, School of Chemistry and Chemical Engineering, CHINA.
Epoxy resin with high thermal conductivity (λ) are widely used in electronic packaging, bonding, and coating. However, those with high intrinsic λ, typically synthesized using biphenyl or aromatic rings extended by ester linkages as the mesogenic unit, often exhibit high liquid crystal transition temperatures and poor processability. In this study, a series of naphthalene-based liquid crystal epoxy monomers (LCE) were synthesized, using naphthalene as the mesogenic unit and modifying the flexible chain length on both sides.
View Article and Find Full Text PDFMater Horiz
March 2025
CIC nanoGUNE BRTA, 20018 Donostia-San Sebastián, Basque Country, Spain.
The chemical and structural flexibility of hybrid organic-inorganic metal halide perovskites (HOIPs) provides an ideal platform for engineering not only their well-studied optical properties, but also their magnetic ones. In this review we present HOIPs from a new perspective, turning the attention to their magnetic properties and their potential as a new class of on-demand low-dimensional magnetic materials. Focusing on HOIPs containing transition metals, we comprehensively present the progress that has been made in preparing, understanding and exploring magnetic HOIPs.
View Article and Find Full Text PDFNanoscale
March 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, Ministry of Education, Xi'an, 710062, P. R. China.
Sodium nickel phosphate (NaNiPO, NNP) is an attractive cathode material for high performance supercapacitors due to its abundance of active sites for oxidation/reduction, highly stable framework structure, . However, its disadvantages of low electric conductivity, disturbances of its impure crystalline phase, and the numerous pores/gaps produced by agglomerated polycrystalline morphologies in this cathode often limit its electrochemical performance. Herein, single-crystalline NNP rod-like nanoparticles with high phase purity have been prepared by spontaneous combustion combined with subsequent solid-phase calcination.
View Article and Find Full Text PDFSmall
March 2025
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
The fabrication of liquid crystalline (LC) organogel via supramolecular interactions between Deoxyribonucleic acid (DNA) and lyotropic cationic surfactant containing cyanobiphenyl moiety is reported. The fabricated organogel endows dominantly viscous behavior in dimethyl sulfoxide (DMSO) and elastic behavior in n-propanol (n-PrOH), respectively. By judiciously controlling the viscosity, DMSO organogels can be drawn to form a fiber with an elongation of up to 4.
View Article and Find Full Text PDFAdv Mater
March 2025
National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials (Shandong University), Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
Obtaining controllable active layer morphology plays a significant role in boosting the device performance of organic solar cells (OSCs). Herein, a quaternary strategy, which incorporates polymer donor D18-Cl and small molecule acceptor AITC into the host D18:N3, is employed to precisely modulate crystallization kinetics for favorable morphology evolution within the active layer. In situ spectroscopic measurements during film-formation demonstrate that while D18-Cl works as a nucleator to promote aggregation of D18 and foster donor/acceptor intermixing, AITC has exactly the opposite impact on aggregation of N3 and intermixing kinetics of donor and acceptor, working as a plasticizer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!