A deterministic analysis of genome integrity during neoplastic growth in Drosophila.

PLoS One

Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zurich, Basel, Switzerland ; Faculty of Science, University of Basel, Basel, Switzerland.

Published: January 2015

The development of cancer has been associated with the gradual acquisition of genetic alterations leading to a progressive increase in malignancy. In various cancer types this process is enabled and accelerated by genome instability. While genome sequencing-based analysis of tumor genomes becomes increasingly a standard procedure in human cancer research, the potential necessity of genome instability for tumorigenesis in Drosophila melanogaster has, to our knowledge, never been determined at DNA sequence level. Therefore, we induced formation of tumors by depletion of the Drosophila tumor suppressor Polyhomeotic and subjected them to genome sequencing. To achieve a highly resolved delineation of the genome structure we developed the Deterministic Structural Variation Detection (DSVD) algorithm, which identifies structural variations (SVs) with high accuracy and at single base resolution. The employment of long overlapping paired-end reads enables DSVD to perform a deterministic, i.e. fragment size distribution independent, identification of a large size spectrum of SVs. Application of DSVD and other algorithms to our sequencing data reveals substantial genetic variation with respect to the reference genome reflecting temporal separation of the reference and laboratory strains. The majority of SVs, constituted by small insertions/deletions, is potentially caused by erroneous replication or transposition of mobile elements. Nevertheless, the tumor did not depict a loss of genome integrity compared to the control. Altogether, our results demonstrate that genome stability is not affected inevitably during sustained tumor growth in Drosophila implying that tumorigenesis, in this model organism, can occur irrespective of genome instability and the accumulation of specific genetic alterations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916295PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087090PLOS

Publication Analysis

Top Keywords

genome instability
12
genome
10
genome integrity
8
growth drosophila
8
genetic alterations
8
deterministic analysis
4
analysis genome
4
integrity neoplastic
4
neoplastic growth
4
drosophila
4

Similar Publications

Gastric cancer genomics study using reference human pangenomes.

Life Sci Alliance

April 2025

https://ror.org/0220qvk04 Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China

A pangenome is the sum of the genetic information of all individuals in a species or a population. Genomics research has been gradually shifted to a paradigm using a pangenome as the reference. However, in disease genomics study, pangenome-based analysis is still in its infancy.

View Article and Find Full Text PDF

The morphologic features of uterine smooth muscle tumors (USMTs) are subject to interobserver variability and are complicated by consideration of features of fumarate hydratase deficiency (FHd) and other morphologic subtypes, with difficult cases occasionally diagnosed as smooth muscle tumor of uncertain malignant potential (STUMP). We compare immunohistochemical findings and detailed morphologic analysis of 45 USMTs by 4 fellowship-trained gynecologic pathologists with comprehensive molecular analysis, focusing on FHd leiomyomas (n=15), compared to a variety of other USMTs with overlapping morphologic features, including 9 STUMPs, 8 usual-type leiomyomas (ULM), 11 apoplectic leiomyomas, and 2 leiomyomas with bizarre nuclei (LMBN). FHd leiomyomas, defined by immunohistochemical (IHC) loss of FH and/or 2SC accumulation, showed FH mutations and/or FH copy loss in all cases, with concurrent TP53 mutations in 2 tumors.

View Article and Find Full Text PDF

In eukaryotes, mismatch repair begins with M ut S h omolog (MSH) complexes, which scan newly replicated DNA for mismatches. Upon mismatch detection, MSH complexes recruit the PCNA- stimulated endonuclease Mlh1-Pms1/PMS2 (yeast/human), which nicks the DNA to allow downstream proteins to remove the mismatch. Past work has shown that although Mlh1-Pms1 is an ATPase and this activity is important , ATP is not required to nick DNA.

View Article and Find Full Text PDF

Primary testicular diffuse large B-cell lymphoma (PT-DLBCL) is a rare and aggressive lymphoma with molecular heterogeneity not well characterize. In this study, we performed next-generation sequencing analysis for a large number of DNA and RNA samples from patients with PT-DLBCL. DNA sequencing analysis identified ≥ 3 chromosomes with copy number variations (CNVs) and microsatellite instability as prognostic biomarkers, rather than mutations and genetic subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!