There are few study data to help in the decision whether to perform aggressive surgical revascularization, such as emergency bypass, after intravenous recombinant tissue plasminogen activator (rt-PA) administration in patients with progressive symptoms due to acute cerebral ischemia. A 33-year-old healthy male with no known previous medical history developed right hemiparesis and motor aphasia. No acute lesion was observed on admission computed tomography. According to the treatment protocol, emergency intravenous rt-PA administration was indicated within 3 h. After rt-PA administration, symptoms progressed to complete right hemiplegia. Emergency magnetic resonance imaging (MRI) showed an acute ischemic lesion in the left basal ganglia. MR angiography showed severe stenosis of the bilateral terminal portion of the internal carotid artery and occlusion of the left middle cerebral artery (MCA). Obvious diffusion-perfusion mismatch was detected. We performed digital subtraction angiography and diagnosed this condition as acute cerebral ischemia induced by moyamoya disease. We decided to perform emergency superficial temporal artery (STA)-MCA bypass to prevent further damage. The operation began 7 h after the administration of rt-PA and successful bypass was achieved. Symptoms stabilized and improved postoperatively. The majority of the area with preoperative hypoperfusion was rescued. Four months after surgery, the patient resumed his previous employment and continues to do well after 1.5 years of follow-up. This is the first report of emergency STA-MCA bypass performed after intravenous rt-PA administration for acute cerebral ischemia in a patient with moyamoya disease. We conclude that emergency STA-MCA bypass is a viable option for patients with moyamoya disease even after administration of rt-PA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919519 | PMC |
http://dx.doi.org/10.1159/000357664 | DOI Listing |
Radiology
January 2025
From the Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany (L.M., G.B., P.S., J.F., C.P.S.); Dept of Diagnostic and Interventional Neuroradiology, Hosp Bremen-Mitte, Bremen, Germany (M.A., P.P.); Interventional Neuroradiology Section, Dept of Radiology, Donostia Univ Hosp, Donostia-San Sebastián, Spain (Á.L., J.Á.L.); Clinic for Radiology, Section for Interventional Radiology, Univ of Münster and Univ Hosp Münster, Münster, Germany (W.S., H.K., C.P.S.); Dept of Neuroradiology, Westpfalz-Klinikum, Kaiserslautern, Germany (W.N.); Dept of Neuroradiology, Otto-von-Guericke-Universitätsklinikum Magdeburg, Magdeburg, Germany (D.B., M.T.); Inst for Diagnostic and Interventional Radiology and Neuroradiology, Univ Hosp Essen, Essen, Germany (H.S., C.D.); Dept of Neuroradiology, Univ of Cologne, Cologne, Germany (C.K., C.Z.); Dept of Neuroradiology, Univ Hosp Aachen, Aachen, Germany (C.W., M. Möhlenbruch); Dept of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical Univ Munich, Munich, Germany (M.R.H.P., C.M.); Inst of Neuroradiology, Univ Hosps, LMU Munich, Munich, Germany (H.Z.); Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Goettingen, Goettingen, Germany (M. Ernst, A.J.); Interventional Neuroradiology, Dept of Radiology, Hosp Clínico San Carlos, Madrid, Spain (M.M.G., C.P.G.); Dept of Neuroradiology, Hosp Universitario La Paz, Madrid, Spain (P.N., A.F.P.); Div of Neurology, Dept of Medicine (L.Y., B.T.), and Div of Interventional Radiology, Dept of Diagnostic Imaging (A.G.), National Univ Health System, Singapore; Yong Loo Lin School of Medicine, National Univ of Singapore, Singapore (L.Y., B.T., A.G.); Inst of Neuroradiology, Charité Universitätsmedizin Berlin, Berlin, Germany (E.S., M. Miszczuk); Dept of Neuroradiology, Clinic and Policlinic of Radiology, Univ Hosp Halle/Saale, Halle, Germany (S.S.); Dept of Radiology and Neuroradiology, Stadtspital Zürich, Zürich, Switzerland (P.S.); Dept of Diagnostic and Interventional Neuroradiology, Univ Hosp Basel, Basel, Switzerland (P.S., M.P.); Depts of Interventional Neuroradiology (J.Z.P.) and Neurology (G.P.), Hosp Clínico Universitario Virgen de la Arrixaca, Murcia, Spain; Dept of Neuroradiology, Karolinska Univ Hosp and Dept of Clinical Neuroscience, Karolinska Inst, Stockholm, Sweden (F.A., T.A.); Dept of Medical Imaging, AZ Groeninge, Kortrijk, Belgium (T.A.); Dept of Radiology, Comenius Univ's Jessenius Faculty of Medicine and Univ Hosp, Martin, Slovakia (K.Z.); Dept of Radiology, Aretaieion Univ Hosp, National and Kapodistrian Univ of Athens, Athens, Greece (P.P.); Dept of Neuroradiology, Univ Hosp Marburg, Marburg, Germany (A.K.); Dept of Neuroradiology, Univ Hosp of Bonn, Bonn, Germany (F.D.); and Dept of Neuroradiology, Alfried Krupp Krankenhaus, Essen, Germany (M. Elsharkawy).
Background Symptomatic acute occlusions of the internal carotid artery (ICA) below the circle of Willis can cause a variety of stroke symptoms, even if the major intracranial cerebral arteries remain patent; however, outcome and safety data are limited. Purpose To compare treatment effects and procedural safety of endovascular treatment (EVT) and best medical treatment (BMT) in patients with symptomatic acute occlusions of the ICA below the circle of Willis. Materials and Methods This retrospective, multicenter cohort study from 22 comprehensive stroke centers in Europe and Asia includes patients treated between January 1, 2008, and December 31, 2022.
View Article and Find Full Text PDFJ Physiol
January 2025
Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.
J Med Virol
January 2025
Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Apathy is a common neuropsychiatric symptom following stroke, characterized by reduced goal-directed behavior. The reward decision network (RDN), which plays a crucial role in regulating goal-directed behaviors, is closely associated with apathy. However, the relationship between poststroke apathy (PSA) and RDN dysfunction remains unclear due to apathy heterogeneity, the confounding effect of depression and individual variability in lesion impacts.
View Article and Find Full Text PDFEur Stroke J
January 2025
Stroke and Elderly Care Medicine, University of Edinburgh, Edinburgh, UK.
Background: National stroke clinical quality registries/audits support improvements in stroke care. In a 2016 systematic review, 28 registries were identified. Since 2016 there have been important advances in stroke care, including the development of thrombectomy services.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!