It has been known for over 3 decades that progesterone (P4) suppresses follicle growth. It has been assumed that P4 acts directly on granulosa cells of developing follicles to slow their development, as P4 inhibits both mitosis and apoptosis of cultured granulosa cells. However, granulosa cells of developing follicles of mice, rats, monkeys, and humans do not express the A or B isoform of the classic nuclear receptor for P4 (PGR). By contrast, these granulosa cells express other P4 binding proteins, one of which is referred to as PGR membrane component 1 (PGRMC1). PGRMC1 specifically binds P4 with high affinity and mediates P4's anti-mitotic and anti-apoptotic action as evidenced by the lack of these P4-dependent effects in PGRMC1-depleted cells. In addition, mice in which PGRMC1 is conditionally depleted in granulosa cells show diminished follicle development. While the mechanism through which P4 activation of PGRMC1 affects granulosa cell function is not well defined, it appears that PGRMC1 controls granulosa cell function in part by regulating gene expression in T-cell-specific transcription factor/lymphoid enhancer factor-dependent manner. Clinically, altered PGRMC1 expression has been correlated with premature ovarian failure/insufficiency, polycystic ovarian syndrome, and infertility. These collective studies provide strong evidence that PGRMC1 functions as a receptor for P4 in granulosa cells and that altered expression results in compromised reproductive capacity. Ongoing studies seek to define the components of the signal transduction cascade through which P4 activation of PGRMC1 results in the regulation of granulosa cell function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3981902 | PMC |
http://dx.doi.org/10.1530/REP-13-0582 | DOI Listing |
Reprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFSyst Biol Reprod Med
December 2025
Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China.
High concentrations of prolactin (PRL)-induced ovine ovarian granulosa cell (GCs) apoptosis and could aggravate the induced effect. However, the molecular mechanisms that -induced GC apoptosis and repressed steroid hormone secretion remain unclear. In this study, GCs in the P group (GCs with high PRL concentration: 500 ng/mL PRL) and P-10 group (GCs with 500 ng/mL PRL infected by lentiviruses carrying overexpressed sequences of ) were collected for whole-transcriptome analysis.
View Article and Find Full Text PDFGenes (Basel)
December 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Background/objectives: The avascular nature of the follicle creates a hypoxic microenvironment, establishing a niche where granulosa cells (GCs) rely on glycolysis to produce energy in the form of lactate (L-lactate). Autophagy, an evolutionarily conserved stress-response process, involves the formation of autophagosomes to encapsulate intracellular components, delivering them to lysosomes for degradation. This process plays a critical role in maintaining optimal follicular development.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
, a member of the PAT family, is expressed in both adipocytes and steroidogenic cells. In this study, we used cell transfection technology combined with transcriptome sequencing to investigate the regulatory mechanism of in goose follicular GCs. Gene Ontology (GO) analysis revealed that in the four groups (phGC: over_vs_over-NC; hGC: over_vs_over-NC; phGC: si_vs_si-NC; hGC: si_vs_si-NC), most differentially expressed genes (DEGs) were significantly enriched ( < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!