Accurate reconstruction of the regulatory networks that control gene expression is one of the key current challenges in molecular biology. Although gene expression and chromatin state dynamics are ultimately encoded by constellations of binding sites recognized by regulators such as transcriptions factors (TFs) and microRNAs (miRNAs), our understanding of this regulatory code and its context-dependent read-out remains very limited. Given that there are thousands of potential regulators in mammals, it is not practical to use direct experimentation to identify which of these play a key role for a particular system of interest. We developed a methodology that models gene expression or chromatin modifications in terms of genome-wide predictions of regulatory sites and completely automated it into a web-based tool called ISMARA (Integrated System for Motif Activity Response Analysis). Given only gene expression or chromatin state data across a set of samples as input, ISMARA identifies the key TFs and miRNAs driving expression/chromatin changes and makes detailed predictions regarding their regulatory roles. These include predicted activities of the regulators across the samples, their genome-wide targets, enriched gene categories among the targets, and direct interactions between the regulators. Applying ISMARA to data sets from well-studied systems, we show that it consistently identifies known key regulators ab initio. We also present a number of novel predictions including regulatory interactions in innate immunity, a master regulator of mucociliary differentiation, TFs consistently disregulated in cancer, and TFs that mediate specific chromatin modifications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009616 | PMC |
http://dx.doi.org/10.1101/gr.169508.113 | DOI Listing |
Brief Bioinform
November 2024
Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States.
Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.
View Article and Find Full Text PDFClin Cancer Res
January 2025
Stanford University, Palo Alto, CA, United States.
Purpose: After failing primary and secondary hormonal therapy, castration-resistant and neuroendocrine prostate cancer metastatic to the bone is invariably lethal, although treatment with docetaxel and carboplatin can modestly improve survival. Therefore, agents targeting biologically relevant pathways in PCa and potentially synergizing with docetaxel and carboplatin in inhibiting bone metastasis growth are urgently needed.
Experimental Design: Phosphorylated (activated) AXL expression in human prostate cancer bone metastases was assessed by immunohistochemical staining.
STAR Protoc
January 2025
Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30602, USA. Electronic address:
Spatial transcriptomics enhances our understanding of cellular organization by mapping gene expression data to precise tissue locations. Here, we present a protocol for using weighted ensemble method for spatial transcriptomics (WEST), which uses ensemble techniques to boost the robustness and accuracy of existing algorithms. We describe steps for preprocessing data, obtaining embeddings from individual algorithms, and ensemble integrating all embeddings as a similarity matrix.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
Sci Transl Med
January 2025
Graduate Program in Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue (M-860), Miami, FL 33136, USA.
Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!