Hydrogen peroxide, the nonradical 2-electron reduction product of oxygen, is a normal aerobic metabolite occurring at about 10 nm intracellular concentration. In liver, it is produced at 50 nmol/min/g of tissue, which is about 2% of total oxygen uptake at steady state. Metabolically generated H2O2 emerged from recent research as a central hub in redox signaling and oxidative stress. Upon generation by major sources, the NADPH oxidases or Complex III of the mitochondrial respiratory chain, H2O2 is under sophisticated fine control of peroxiredoxins and glutathione peroxidases with their backup systems as well as by catalase. Of note, H2O2 is a second messenger in insulin signaling and in several growth factor-induced signaling cascades. H2O2 transport across membranes is facilitated by aquaporins, denoted as peroxiporins. Specialized protein cysteines operate as redox switches using H2O2 as thiol oxidant, making this reactive oxygen species essential for poising the set point of the redox proteome. Major processes including proliferation, differentiation, tissue repair, inflammation, circadian rhythm, and aging use this low molecular weight oxygen metabolite as signaling compound.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979367PMC
http://dx.doi.org/10.1074/jbc.R113.544635DOI Listing

Publication Analysis

Top Keywords

redox signaling
8
signaling oxidative
8
oxidative stress
8
h2o2
6
signaling
5
role metabolic
4
metabolic h2o2
4
h2o2 generation
4
redox
4
generation redox
4

Similar Publications

Objective: Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.

Methods: Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro.

View Article and Find Full Text PDF

Psoriasis is a chronic inflammatory skin condition characterized by erythematous plaques with white scales. Its pathogenesis is closely linked to oxidative stress and an imbalance in Th1/Th2 immune responses. Current treatments for psoriasis, such as topical agents, systemic therapies and phototherapy, frequently fail to achieve complete remission in clinical settings.

View Article and Find Full Text PDF

Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.

View Article and Find Full Text PDF

Low background catalytic redox recycling coupled with hybridization chain reaction amplification for highly sensitive electrochemical aptamer luteinizing hormone assay.

Bioelectrochemistry

December 2024

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

The concentration variation of luteinizing hormone (LH) regulates the cell cycle of oocyte meiosis and significantly affect the whole reproductive cycle. Sensitively quantifying the LH biomarker therefore plays an important role for reproductive disease diagnosis. By coupling a new low background catalytic redox recycling strategy with hybridization chain reaction (HCR), we propose a highly sensitive bio-electrochemical aptamer LH sensing method.

View Article and Find Full Text PDF

Engineering of the genetic code.

Curr Opin Biotechnol

December 2024

Department of Life Sciences, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel. Electronic address:

The genetic code is a universally conserved mechanism that translates genetic information into proteins, consisting of 64 codons formed by four nucleotide bases. With a few exceptions, the genetic code universally encodes 20 canonical amino acids (AAs) and three stop signals, with many AAs represented by multiple codons. Genetic engineering has expanded this system through approaches like codon reassignment and synthetic base pair introduction, allowing for the incorporation of noncanonical AAs (ncAAs) into proteins, known as genetic code expansion (GCE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!