A new class of partially coherent pulses of Schell type with cosine-Gaussian temporal degree of coherence is introduced. Such waves are termed the Cosine-Gaussian Schell-model (CGSM) pulses. The analytic expression for the temporal mutual coherence function of the CGSM pulse in dispersive media is derived and used to study the evolution of its intensity distribution and its temporal degree of coherence. Further, the numerical calculations are performed in order to show the dependence of the intensity profile and the temporal degree of coherence of the CGSM pulse on the incident pulse duration, the initial temporal coherence length, the order-parameter n and the dispersion of the medium. The most important feature of the novel pulsed wave is its ability to split into two pulses on passage in a dispersive medium at some critical propagation distance. Such critical distance and the subsequent evolution of the split pulses are shown to depend on the source parameters and on the properties of the medium in which the pulse travels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.000931 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!